File size: 10,447 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from sympy import sin, cos, tan, pi, symbols, Matrix, S, Function
from sympy.physics.mechanics import (Particle, Point, ReferenceFrame,
                                     RigidBody)
from sympy.physics.mechanics import (angular_momentum, dynamicsymbols,
                                     kinetic_energy, linear_momentum,
                                     outer, potential_energy, msubs,
                                     find_dynamicsymbols, Lagrangian)

from sympy.physics.mechanics.functions import (
    center_of_mass, _validate_coordinates, _parse_linear_solver)
from sympy.testing.pytest import raises, warns_deprecated_sympy


q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = A.orientnew('B', 'Axis', [q2, A.x])
C = B.orientnew('C', 'Axis', [q3, B.y])


def test_linear_momentum():
    N = ReferenceFrame('N')
    Ac = Point('Ac')
    Ac.set_vel(N, 25 * N.y)
    I = outer(N.x, N.x)
    A = RigidBody('A', Ac, N, 20, (I, Ac))
    P = Point('P')
    Pa = Particle('Pa', P, 1)
    Pa.point.set_vel(N, 10 * N.x)
    raises(TypeError, lambda: linear_momentum(A, A, Pa))
    raises(TypeError, lambda: linear_momentum(N, N, Pa))
    assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y


def test_angular_momentum_and_linear_momentum():
    """A rod with length 2l, centroidal inertia I, and mass M along with a
    particle of mass m fixed to the end of the rod rotate with an angular rate
    of omega about point O which is fixed to the non-particle end of the rod.
    The rod's reference frame is A and the inertial frame is N."""
    m, M, l, I = symbols('m, M, l, I')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    a = ReferenceFrame('a')
    O = Point('O')
    Ac = O.locatenew('Ac', l * N.x)
    P = Ac.locatenew('P', l * N.x)
    O.set_vel(N, 0 * N.x)
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
    expected = 2 * m * omega * l * N.y + M * l * omega * N.y
    assert linear_momentum(N, A, Pa) == expected
    raises(TypeError, lambda: angular_momentum(N, N, A, Pa))
    raises(TypeError, lambda: angular_momentum(O, O, A, Pa))
    raises(TypeError, lambda: angular_momentum(O, N, O, Pa))
    expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
    assert angular_momentum(O, N, A, Pa) == expected


def test_kinetic_energy():
    m, M, l1 = symbols('m M l1')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
    raises(TypeError, lambda: kinetic_energy(N, N, A))
    assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
            + 2*l1**2*m*omega**2 + omega**2/2)).expand()


def test_potential_energy():
    m, M, l1, g, h, H = symbols('m M l1 g h H')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * H
    assert potential_energy(A, Pa) == m * g * h + M * g * H


def test_Lagrangian():
    M, m, g, h = symbols('M m g h')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    P = O.locatenew('P', 1 * N.x)
    P.set_vel(N, 10 * N.x)
    Pa = Particle('Pa', P, 1)
    Ac = O.locatenew('Ac', 2 * N.y)
    Ac.set_vel(N, 5 * N.y)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, 10 * N.z)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, 20, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * h
    raises(TypeError, lambda: Lagrangian(A, A, Pa))
    raises(TypeError, lambda: Lagrangian(N, N, Pa))


def test_msubs():
    a, b = symbols('a, b')
    x, y, z = dynamicsymbols('x, y, z')
    # Test simple substitution
    expr = Matrix([[a*x + b, x*y.diff() + y],
                   [x.diff().diff(), z + sin(z.diff())]])
    sol = Matrix([[a + b, y],
                  [x.diff().diff(), 1]])
    sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0}
    assert msubs(expr, sd) == sol
    # Test smart substitution
    expr = cos(x + y)*tan(x + y) + b*x.diff()
    sd = {x: 0, y: pi/2, x.diff(): 1}
    assert msubs(expr, sd, smart=True) == b + 1
    N = ReferenceFrame('N')
    v = x*N.x + y*N.y
    d = x*(N.x|N.x) + y*(N.y|N.y)
    v_sol = 1*N.y
    d_sol = 1*(N.y|N.y)
    sd = {x: 0, y: 1}
    assert msubs(v, sd) == v_sol
    assert msubs(d, sd) == d_sol


def test_find_dynamicsymbols():
    a, b = symbols('a, b')
    x, y, z = dynamicsymbols('x, y, z')
    expr = Matrix([[a*x + b, x*y.diff() + y],
                   [x.diff().diff(), z + sin(z.diff())]])
    # Test finding all dynamicsymbols
    sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()}
    assert find_dynamicsymbols(expr) == sol
    # Test finding all but those in sym_list
    exclude_list = [x, y, z]
    sol = {y.diff(), x.diff().diff(), z.diff()}
    assert find_dynamicsymbols(expr, exclude=exclude_list) == sol
    # Test finding all dynamicsymbols in a vector with a given reference frame
    d, e, f = dynamicsymbols('d, e, f')
    A = ReferenceFrame('A')
    v = d * A.x + e * A.y + f * A.z
    sol = {d, e, f}
    assert find_dynamicsymbols(v, reference_frame=A) == sol
    # Test if a ValueError is raised on supplying only a vector as input
    raises(ValueError, lambda: find_dynamicsymbols(v))


# This function tests the center_of_mass() function
# that was added in PR #14758 to compute the center of
# mass of a system of bodies.
def test_center_of_mass():
    a = ReferenceFrame('a')
    m = symbols('m', real=True)
    p1 = Particle('p1', Point('p1_pt'), S.One)
    p2 = Particle('p2', Point('p2_pt'), S(2))
    p3 = Particle('p3', Point('p3_pt'), S(3))
    p4 = Particle('p4', Point('p4_pt'), m)
    b_f = ReferenceFrame('b_f')
    b_cm = Point('b_cm')
    mb = symbols('mb')
    b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
    p2.point.set_pos(p1.point, a.x)
    p3.point.set_pos(p1.point, a.x + a.y)
    p4.point.set_pos(p1.point, a.y)
    b.masscenter.set_pos(p1.point, a.y + a.z)
    point_o=Point('o')
    point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
    expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
    assert point_o.pos_from(p1.point)-expr == 0


def test_validate_coordinates():
    q1, q2, q3, u1, u2, u3, ua1, ua2, ua3 = dynamicsymbols('q1:4 u1:4 ua1:4')
    s1, s2, s3 = symbols('s1:4')
    # Test normal
    _validate_coordinates([q1, q2, q3], [u1, u2, u3],
                          u_auxiliary=[ua1, ua2, ua3])
    # Test not equal number of coordinates and speeds
    _validate_coordinates([q1, q2])
    _validate_coordinates([q1, q2], [u1])
    _validate_coordinates(speeds=[u1, u2])
    # Test duplicate
    _validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False)
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q2], [u1, u2, u3]))
    _validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False)
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q3], [u1, u2, u2], check_duplicates=True))
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q3], [q1, u2, u3], check_duplicates=True))
    _validate_coordinates([q1, q2, q3], [u1, u2, u3], check_duplicates=False,
                          u_auxiliary=[u1, ua2, ua2])
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q3], [u1, u2, u3], u_auxiliary=[u1, ua2, ua3]))
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q3], [u1, u2, u3], u_auxiliary=[q1, ua2, ua3]))
    raises(ValueError, lambda: _validate_coordinates(
        [q1, q2, q3], [u1, u2, u3], u_auxiliary=[ua1, ua2, ua2]))
    # Test is_dynamicsymbols
    _validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False)
    raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3]))
    _validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False)
    raises(ValueError, lambda: _validate_coordinates(
        [s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True))
    _validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False)
    raises(ValueError, lambda: _validate_coordinates(
        [s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True))
    _validate_coordinates(u_auxiliary=[s1, ua1], is_dynamicsymbols=False)
    raises(ValueError, lambda: _validate_coordinates(u_auxiliary=[s1, ua1]))
    # Test normal function
    t = dynamicsymbols._t
    a = symbols('a')
    f1, f2 = symbols('f1:3', cls=Function)
    _validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False)
    raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)]))
    raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)]))
    dynamicsymbols._t = a
    _validate_coordinates([f1(a), f2(a)])
    raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)]))
    dynamicsymbols._t = t


def test_parse_linear_solver():
    A, b = Matrix(3, 3, symbols('a:9')), Matrix(3, 2, symbols('b:6'))
    assert _parse_linear_solver(Matrix.LUsolve) == Matrix.LUsolve  # Test callable
    assert _parse_linear_solver('LU')(A, b) == Matrix.LUsolve(A, b)


def test_deprecated_moved_functions():
    from sympy.physics.mechanics.functions import (
        inertia, inertia_of_point_mass, gravity)
    N = ReferenceFrame('N')
    with warns_deprecated_sympy():
        assert inertia(N, 0, 1, 0, 1) == (N.x | N.y) + (N.y | N.x) + (N.y | N.y)
    with warns_deprecated_sympy():
        assert inertia_of_point_mass(1, N.x + N.y, N) == (
            (N.x | N.x) + (N.y | N.y) + 2 * (N.z | N.z) -
            (N.x | N.y) - (N.y | N.x))
    p = Particle('P')
    with warns_deprecated_sympy():
        assert gravity(-2 * N.z, p) == [(p.masscenter, -2 * p.mass * N.z)]