Spaces:
Running
Running
""" | |
This module can be used to solve problems related | |
to 2D Trusses. | |
""" | |
from cmath import atan, inf | |
from sympy.core.add import Add | |
from sympy.core.evalf import INF | |
from sympy.core.mul import Mul | |
from sympy.core.symbol import Symbol | |
from sympy.core.sympify import sympify | |
from sympy import Matrix, pi | |
from sympy.external.importtools import import_module | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.matrices.dense import zeros | |
import math | |
from sympy.physics.units.quantities import Quantity | |
from sympy.plotting import plot | |
from sympy.utilities.decorator import doctest_depends_on | |
from sympy import sin, cos | |
__doctest_requires__ = {('Truss.draw'): ['matplotlib']} | |
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']}) | |
class Truss: | |
""" | |
A Truss is an assembly of members such as beams, | |
connected by nodes, that create a rigid structure. | |
In engineering, a truss is a structure that | |
consists of two-force members only. | |
Trusses are extremely important in engineering applications | |
and can be seen in numerous real-world applications like bridges. | |
Examples | |
======== | |
There is a Truss consisting of four nodes and five | |
members connecting the nodes. A force P acts | |
downward on the node D and there also exist pinned | |
and roller joints on the nodes A and B respectively. | |
.. image:: truss_example.png | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0)) | |
>>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3")) | |
>>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4")) | |
>>> t.apply_load(("node_4", 10, 270)) | |
>>> t.apply_support(("node_1", "pinned"), ("node_2", "roller")) | |
""" | |
def __init__(self): | |
""" | |
Initializes the class | |
""" | |
self._nodes = [] | |
self._members = {} | |
self._loads = {} | |
self._supports = {} | |
self._node_labels = [] | |
self._node_positions = [] | |
self._node_position_x = [] | |
self._node_position_y = [] | |
self._nodes_occupied = {} | |
self._member_lengths = {} | |
self._reaction_loads = {} | |
self._internal_forces = {} | |
self._node_coordinates = {} | |
def nodes(self): | |
""" | |
Returns the nodes of the truss along with their positions. | |
""" | |
return self._nodes | |
def node_labels(self): | |
""" | |
Returns the node labels of the truss. | |
""" | |
return self._node_labels | |
def node_positions(self): | |
""" | |
Returns the positions of the nodes of the truss. | |
""" | |
return self._node_positions | |
def members(self): | |
""" | |
Returns the members of the truss along with the start and end points. | |
""" | |
return self._members | |
def member_lengths(self): | |
""" | |
Returns the length of each member of the truss. | |
""" | |
return self._member_lengths | |
def supports(self): | |
""" | |
Returns the nodes with provided supports along with the kind of support provided i.e. | |
pinned or roller. | |
""" | |
return self._supports | |
def loads(self): | |
""" | |
Returns the loads acting on the truss. | |
""" | |
return self._loads | |
def reaction_loads(self): | |
""" | |
Returns the reaction forces for all supports which are all initialized to 0. | |
""" | |
return self._reaction_loads | |
def internal_forces(self): | |
""" | |
Returns the internal forces for all members which are all initialized to 0. | |
""" | |
return self._internal_forces | |
def add_node(self, *args): | |
""" | |
This method adds a node to the truss along with its name/label and its location. | |
Multiple nodes can be added at the same time. | |
Parameters | |
========== | |
The input(s) for this method are tuples of the form (label, x, y). | |
label: String or a Symbol | |
The label for a node. It is the only way to identify a particular node. | |
x: Sympifyable | |
The x-coordinate of the position of the node. | |
y: Sympifyable | |
The y-coordinate of the position of the node. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0)) | |
>>> t.nodes | |
[('A', 0, 0)] | |
>>> t.add_node(('B', 3, 0), ('C', 4, 1)) | |
>>> t.nodes | |
[('A', 0, 0), ('B', 3, 0), ('C', 4, 1)] | |
""" | |
for i in args: | |
label = i[0] | |
x = i[1] | |
x = sympify(x) | |
y=i[2] | |
y = sympify(y) | |
if label in self._node_coordinates: | |
raise ValueError("Node needs to have a unique label") | |
elif [x, y] in self._node_coordinates.values(): | |
raise ValueError("A node already exists at the given position") | |
else : | |
self._nodes.append((label, x, y)) | |
self._node_labels.append(label) | |
self._node_positions.append((x, y)) | |
self._node_position_x.append(x) | |
self._node_position_y.append(y) | |
self._node_coordinates[label] = [x, y] | |
def remove_node(self, *args): | |
""" | |
This method removes a node from the truss. | |
Multiple nodes can be removed at the same time. | |
Parameters | |
========== | |
The input(s) for this method are the labels of the nodes to be removed. | |
label: String or Symbol | |
The label of the node to be removed. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 5, 0)) | |
>>> t.nodes | |
[('A', 0, 0), ('B', 3, 0), ('C', 5, 0)] | |
>>> t.remove_node('A', 'C') | |
>>> t.nodes | |
[('B', 3, 0)] | |
""" | |
for label in args: | |
for i in range(len(self.nodes)): | |
if self._node_labels[i] == label: | |
x = self._node_position_x[i] | |
y = self._node_position_y[i] | |
if label not in self._node_coordinates: | |
raise ValueError("No such node exists in the truss") | |
else: | |
members_duplicate = self._members.copy() | |
for member in members_duplicate: | |
if label == self._members[member][0] or label == self._members[member][1]: | |
raise ValueError("The given node already has member attached to it") | |
self._nodes.remove((label, x, y)) | |
self._node_labels.remove(label) | |
self._node_positions.remove((x, y)) | |
self._node_position_x.remove(x) | |
self._node_position_y.remove(y) | |
if label in self._loads: | |
self._loads.pop(label) | |
if label in self._supports: | |
self._supports.pop(label) | |
self._node_coordinates.pop(label) | |
def add_member(self, *args): | |
""" | |
This method adds a member between any two nodes in the given truss. | |
Parameters | |
========== | |
The input(s) of the method are tuple(s) of the form (label, start, end). | |
label: String or Symbol | |
The label for a member. It is the only way to identify a particular member. | |
start: String or Symbol | |
The label of the starting point/node of the member. | |
end: String or Symbol | |
The label of the ending point/node of the member. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2)) | |
>>> t.add_member(('AB', 'A', 'B'), ('BC', 'B', 'C')) | |
>>> t.members | |
{'AB': ['A', 'B'], 'BC': ['B', 'C']} | |
""" | |
for i in args: | |
label = i[0] | |
start = i[1] | |
end = i[2] | |
if start not in self._node_coordinates or end not in self._node_coordinates or start==end: | |
raise ValueError("The start and end points of the member must be unique nodes") | |
elif label in self._members: | |
raise ValueError("A member with the same label already exists for the truss") | |
elif self._nodes_occupied.get((start, end)): | |
raise ValueError("A member already exists between the two nodes") | |
else: | |
self._members[label] = [start, end] | |
self._member_lengths[label] = sqrt((self._node_coordinates[end][0]-self._node_coordinates[start][0])**2 + (self._node_coordinates[end][1]-self._node_coordinates[start][1])**2) | |
self._nodes_occupied[start, end] = True | |
self._nodes_occupied[end, start] = True | |
self._internal_forces[label] = 0 | |
def remove_member(self, *args): | |
""" | |
This method removes members from the given truss. | |
Parameters | |
========== | |
labels: String or Symbol | |
The label for the member to be removed. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2)) | |
>>> t.add_member(('AB', 'A', 'B'), ('AC', 'A', 'C'), ('BC', 'B', 'C')) | |
>>> t.members | |
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']} | |
>>> t.remove_member('AC', 'BC') | |
>>> t.members | |
{'AB': ['A', 'B']} | |
""" | |
for label in args: | |
if label not in self._members: | |
raise ValueError("No such member exists in the Truss") | |
else: | |
self._nodes_occupied.pop((self._members[label][0], self._members[label][1])) | |
self._nodes_occupied.pop((self._members[label][1], self._members[label][0])) | |
self._members.pop(label) | |
self._member_lengths.pop(label) | |
self._internal_forces.pop(label) | |
def change_node_label(self, *args): | |
""" | |
This method changes the label(s) of the specified node(s). | |
Parameters | |
========== | |
The input(s) of this method are tuple(s) of the form (label, new_label). | |
label: String or Symbol | |
The label of the node for which the label has | |
to be changed. | |
new_label: String or Symbol | |
The new label of the node. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0)) | |
>>> t.nodes | |
[('A', 0, 0), ('B', 3, 0)] | |
>>> t.change_node_label(('A', 'C'), ('B', 'D')) | |
>>> t.nodes | |
[('C', 0, 0), ('D', 3, 0)] | |
""" | |
for i in args: | |
label = i[0] | |
new_label = i[1] | |
if label not in self._node_coordinates: | |
raise ValueError("No such node exists for the Truss") | |
elif new_label in self._node_coordinates: | |
raise ValueError("A node with the given label already exists") | |
else: | |
for node in self._nodes: | |
if node[0] == label: | |
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2]) | |
self._node_labels[self._node_labels.index(node[0])] = new_label | |
self._node_coordinates[new_label] = self._node_coordinates[label] | |
self._node_coordinates.pop(label) | |
if node[0] in self._supports: | |
self._supports[new_label] = self._supports[node[0]] | |
self._supports.pop(node[0]) | |
if new_label in self._supports: | |
if self._supports[new_label] == 'pinned': | |
if 'R_'+str(label)+'_x' in self._reaction_loads and 'R_'+str(label)+'_y' in self._reaction_loads: | |
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x'] | |
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y'] | |
self._reaction_loads.pop('R_'+str(label)+'_x') | |
self._reaction_loads.pop('R_'+str(label)+'_y') | |
self._loads[new_label] = self._loads[label] | |
for load in self._loads[new_label]: | |
if load[1] == 90: | |
load[0] -= Symbol('R_'+str(label)+'_y') | |
if load[0] == 0: | |
self._loads[label].remove(load) | |
break | |
for load in self._loads[new_label]: | |
if load[1] == 0: | |
load[0] -= Symbol('R_'+str(label)+'_x') | |
if load[0] == 0: | |
self._loads[label].remove(load) | |
break | |
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0) | |
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90) | |
self._loads.pop(label) | |
elif self._supports[new_label] == 'roller': | |
self._loads[new_label] = self._loads[label] | |
for load in self._loads[label]: | |
if load[1] == 90: | |
load[0] -= Symbol('R_'+str(label)+'_y') | |
if load[0] == 0: | |
self._loads[label].remove(load) | |
break | |
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90) | |
self._loads.pop(label) | |
else: | |
if label in self._loads: | |
self._loads[new_label] = self._loads[label] | |
self._loads.pop(label) | |
for member in self._members: | |
if self._members[member][0] == node[0]: | |
self._members[member][0] = new_label | |
self._nodes_occupied[(new_label, self._members[member][1])] = True | |
self._nodes_occupied[(self._members[member][1], new_label)] = True | |
self._nodes_occupied.pop((label, self._members[member][1])) | |
self._nodes_occupied.pop((self._members[member][1], label)) | |
elif self._members[member][1] == node[0]: | |
self._members[member][1] = new_label | |
self._nodes_occupied[(self._members[member][0], new_label)] = True | |
self._nodes_occupied[(new_label, self._members[member][0])] = True | |
self._nodes_occupied.pop((self._members[member][0], label)) | |
self._nodes_occupied.pop((label, self._members[member][0])) | |
def change_member_label(self, *args): | |
""" | |
This method changes the label(s) of the specified member(s). | |
Parameters | |
========== | |
The input(s) of this method are tuple(s) of the form (label, new_label) | |
label: String or Symbol | |
The label of the member for which the label has | |
to be changed. | |
new_label: String or Symbol | |
The new label of the member. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('D', 5, 0)) | |
>>> t.nodes | |
[('A', 0, 0), ('B', 3, 0), ('D', 5, 0)] | |
>>> t.change_node_label(('A', 'C')) | |
>>> t.nodes | |
[('C', 0, 0), ('B', 3, 0), ('D', 5, 0)] | |
>>> t.add_member(('BC', 'B', 'C'), ('BD', 'B', 'D')) | |
>>> t.members | |
{'BC': ['B', 'C'], 'BD': ['B', 'D']} | |
>>> t.change_member_label(('BC', 'BC_new'), ('BD', 'BD_new')) | |
>>> t.members | |
{'BC_new': ['B', 'C'], 'BD_new': ['B', 'D']} | |
""" | |
for i in args: | |
label = i[0] | |
new_label = i[1] | |
if label not in self._members: | |
raise ValueError("No such member exists for the Truss") | |
else: | |
members_duplicate = list(self._members).copy() | |
for member in members_duplicate: | |
if member == label: | |
self._members[new_label] = [self._members[member][0], self._members[member][1]] | |
self._members.pop(label) | |
self._member_lengths[new_label] = self._member_lengths[label] | |
self._member_lengths.pop(label) | |
self._internal_forces[new_label] = self._internal_forces[label] | |
self._internal_forces.pop(label) | |
def apply_load(self, *args): | |
""" | |
This method applies external load(s) at the specified node(s). | |
Parameters | |
========== | |
The input(s) of the method are tuple(s) of the form (location, magnitude, direction). | |
location: String or Symbol | |
Label of the Node at which load is applied. | |
magnitude: Sympifyable | |
Magnitude of the load applied. It must always be positive and any changes in | |
the direction of the load are not reflected here. | |
direction: Sympifyable | |
The angle, in degrees, that the load vector makes with the horizontal | |
in the counter-clockwise direction. It takes the values 0 to 360, | |
inclusive. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> from sympy import symbols | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0)) | |
>>> P = symbols('P') | |
>>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90)) | |
>>> t.loads | |
{'A': [[P, 90], [P/2, 45], [P/4, 90]]} | |
""" | |
for i in args: | |
location = i[0] | |
magnitude = i[1] | |
direction = i[2] | |
magnitude = sympify(magnitude) | |
direction = sympify(direction) | |
if location not in self._node_coordinates: | |
raise ValueError("Load must be applied at a known node") | |
else: | |
if location in self._loads: | |
self._loads[location].append([magnitude, direction]) | |
else: | |
self._loads[location] = [[magnitude, direction]] | |
def remove_load(self, *args): | |
""" | |
This method removes already | |
present external load(s) at specified node(s). | |
Parameters | |
========== | |
The input(s) of this method are tuple(s) of the form (location, magnitude, direction). | |
location: String or Symbol | |
Label of the Node at which load is applied and is to be removed. | |
magnitude: Sympifyable | |
Magnitude of the load applied. | |
direction: Sympifyable | |
The angle, in degrees, that the load vector makes with the horizontal | |
in the counter-clockwise direction. It takes the values 0 to 360, | |
inclusive. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> from sympy import symbols | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0)) | |
>>> P = symbols('P') | |
>>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90)) | |
>>> t.loads | |
{'A': [[P, 90], [P/2, 45], [P/4, 90]]} | |
>>> t.remove_load(('A', P/4, 90), ('A', P/2, 45)) | |
>>> t.loads | |
{'A': [[P, 90]]} | |
""" | |
for i in args: | |
location = i[0] | |
magnitude = i[1] | |
direction = i[2] | |
magnitude = sympify(magnitude) | |
direction = sympify(direction) | |
if location not in self._node_coordinates: | |
raise ValueError("Load must be removed from a known node") | |
else: | |
if [magnitude, direction] not in self._loads[location]: | |
raise ValueError("No load of this magnitude and direction has been applied at this node") | |
else: | |
self._loads[location].remove([magnitude, direction]) | |
if self._loads[location] == []: | |
self._loads.pop(location) | |
def apply_support(self, *args): | |
""" | |
This method adds a pinned or roller support at specified node(s). | |
Parameters | |
========== | |
The input(s) of this method are of the form (location, type). | |
location: String or Symbol | |
Label of the Node at which support is added. | |
type: String | |
Type of the support being provided at the node. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0)) | |
>>> t.apply_support(('A', 'pinned'), ('B', 'roller')) | |
>>> t.supports | |
{'A': 'pinned', 'B': 'roller'} | |
""" | |
for i in args: | |
location = i[0] | |
type = i[1] | |
if location not in self._node_coordinates: | |
raise ValueError("Support must be added on a known node") | |
else: | |
if location not in self._supports: | |
if type == 'pinned': | |
self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0)) | |
self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90)) | |
elif type == 'roller': | |
self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90)) | |
elif self._supports[location] == 'pinned': | |
if type == 'roller': | |
self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0)) | |
elif self._supports[location] == 'roller': | |
if type == 'pinned': | |
self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0)) | |
self._supports[location] = type | |
def remove_support(self, *args): | |
""" | |
This method removes support from specified node(s.) | |
Parameters | |
========== | |
locations: String or Symbol | |
Label of the Node(s) at which support is to be removed. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(('A', 0, 0), ('B', 3, 0)) | |
>>> t.apply_support(('A', 'pinned'), ('B', 'roller')) | |
>>> t.supports | |
{'A': 'pinned', 'B': 'roller'} | |
>>> t.remove_support('A','B') | |
>>> t.supports | |
{} | |
""" | |
for location in args: | |
if location not in self._node_coordinates: | |
raise ValueError("No such node exists in the Truss") | |
elif location not in self._supports: | |
raise ValueError("No support has been added to the given node") | |
else: | |
if self._supports[location] == 'pinned': | |
self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0)) | |
self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90)) | |
elif self._supports[location] == 'roller': | |
self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90)) | |
self._supports.pop(location) | |
def solve(self): | |
""" | |
This method solves for all reaction forces of all supports and all internal forces | |
of all the members in the truss, provided the Truss is solvable. | |
A Truss is solvable if the following condition is met, | |
2n >= r + m | |
Where n is the number of nodes, r is the number of reaction forces, where each pinned | |
support has 2 reaction forces and each roller has 1, and m is the number of members. | |
The given condition is derived from the fact that a system of equations is solvable | |
only when the number of variables is lesser than or equal to the number of equations. | |
Equilibrium Equations in x and y directions give two equations per node giving 2n number | |
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m. | |
The number of variables is simply the sum of the number of reaction forces and member | |
forces. | |
.. note:: | |
The sign convention for the internal forces present in a member revolves around whether each | |
force is compressive or tensile. While forming equations for each node, internal force due | |
to a member on the node is assumed to be away from the node i.e. each force is assumed to | |
be compressive by default. Hence, a positive value for an internal force implies the | |
presence of compressive force in the member and a negative value implies a tensile force. | |
Examples | |
======== | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> t = Truss() | |
>>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0)) | |
>>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3")) | |
>>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4")) | |
>>> t.apply_load(("node_4", 10, 270)) | |
>>> t.apply_support(("node_1", "pinned"), ("node_2", "roller")) | |
>>> t.solve() | |
>>> t.reaction_loads | |
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3} | |
>>> t.internal_forces | |
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10} | |
""" | |
count_reaction_loads = 0 | |
for node in self._nodes: | |
if node[0] in self._supports: | |
if self._supports[node[0]]=='pinned': | |
count_reaction_loads += 2 | |
elif self._supports[node[0]]=='roller': | |
count_reaction_loads += 1 | |
if 2*len(self._nodes) != len(self._members) + count_reaction_loads: | |
raise ValueError("The given truss cannot be solved") | |
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))] | |
load_matrix = zeros(2*len(self.nodes), 1) | |
load_matrix_row = 0 | |
for node in self._nodes: | |
if node[0] in self._loads: | |
for load in self._loads[node[0]]: | |
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'): | |
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180) | |
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180) | |
load_matrix_row += 2 | |
cols = 0 | |
row = 0 | |
for node in self._nodes: | |
if node[0] in self._supports: | |
if self._supports[node[0]]=='pinned': | |
coefficients_matrix[row][cols] += 1 | |
coefficients_matrix[row+1][cols+1] += 1 | |
cols += 2 | |
elif self._supports[node[0]]=='roller': | |
coefficients_matrix[row+1][cols] += 1 | |
cols += 1 | |
row += 2 | |
for member in self._members: | |
start = self._members[member][0] | |
end = self._members[member][1] | |
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2) | |
start_index = self._node_labels.index(start) | |
end_index = self._node_labels.index(end) | |
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length | |
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length | |
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length | |
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length | |
coefficients_matrix[start_index*2][cols] += horizontal_component_start | |
coefficients_matrix[start_index*2+1][cols] += vertical_component_start | |
coefficients_matrix[end_index*2][cols] += horizontal_component_end | |
coefficients_matrix[end_index*2+1][cols] += vertical_component_end | |
cols += 1 | |
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix | |
self._reaction_loads = {} | |
i = 0 | |
min_load = inf | |
for node in self._nodes: | |
if node[0] in self._loads: | |
for load in self._loads[node[0]]: | |
if type(load[0]) not in [Symbol, Mul, Add]: | |
min_load = min(min_load, load[0]) | |
for j in range(len(forces_matrix)): | |
if type(forces_matrix[j]) not in [Symbol, Mul, Add]: | |
if abs(forces_matrix[j]/min_load) <1E-10: | |
forces_matrix[j] = 0 | |
for node in self._nodes: | |
if node[0] in self._supports: | |
if self._supports[node[0]]=='pinned': | |
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i] | |
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1] | |
i += 2 | |
elif self._supports[node[0]]=='roller': | |
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i] | |
i += 1 | |
for member in self._members: | |
self._internal_forces[member] = forces_matrix[i] | |
i += 1 | |
return | |
def draw(self, subs_dict=None): | |
""" | |
Returns a plot object of the Truss with all its nodes, members, | |
supports and loads. | |
.. note:: | |
The user must be careful while entering load values in their | |
directions. The draw function assumes a sign convention that | |
is used for plotting loads. | |
Given a right-handed coordinate system with XYZ coordinates, | |
the supports are assumed to be such that the reaction forces of a | |
pinned support is in the +X and +Y direction while those of a | |
roller support is in the +Y direction. For the load, the range | |
of angles, one can input goes all the way to 360 degrees which, in the | |
the plot is the angle that the load vector makes with the positive x-axis in the anticlockwise direction. | |
For example, for a 90-degree angle, the load will be a vertically | |
directed along +Y while a 270-degree angle denotes a vertical | |
load as well but along -Y. | |
Examples | |
======== | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> from sympy.physics.continuum_mechanics.truss import Truss | |
>>> import math | |
>>> t = Truss() | |
>>> t.add_node(("A", -4, 0), ("B", 0, 0), ("C", 4, 0), ("D", 8, 0)) | |
>>> t.add_node(("E", 6, 2/math.sqrt(3))) | |
>>> t.add_node(("F", 2, 2*math.sqrt(3))) | |
>>> t.add_node(("G", -2, 2/math.sqrt(3))) | |
>>> t.add_member(("AB","A","B"), ("BC","B","C"), ("CD","C","D")) | |
>>> t.add_member(("AG","A","G"), ("GB","G","B"), ("GF","G","F")) | |
>>> t.add_member(("BF","B","F"), ("FC","F","C"), ("CE","C","E")) | |
>>> t.add_member(("FE","F","E"), ("DE","D","E")) | |
>>> t.apply_support(("A","pinned"), ("D","roller")) | |
>>> t.apply_load(("G", 3, 90), ("E", 3, 90), ("F", 2, 90)) | |
>>> p = t.draw() | |
>>> p # doctest: +ELLIPSIS | |
Plot object containing: | |
[0]: cartesian line: 1 for x over (1.0, 1.0) | |
... | |
>>> p.show() | |
""" | |
if not numpy: | |
raise ImportError("To use this function numpy module is required") | |
x = Symbol('x') | |
markers = [] | |
annotations = [] | |
rectangles = [] | |
node_markers = self._draw_nodes(subs_dict) | |
markers += node_markers | |
member_rectangles = self._draw_members() | |
rectangles += member_rectangles | |
support_markers = self._draw_supports() | |
markers += support_markers | |
load_annotations = self._draw_loads() | |
annotations += load_annotations | |
xmax = -INF | |
xmin = INF | |
ymax = -INF | |
ymin = INF | |
for node in self._node_coordinates: | |
xmax = max(xmax, self._node_coordinates[node][0]) | |
xmin = min(xmin, self._node_coordinates[node][0]) | |
ymax = max(ymax, self._node_coordinates[node][1]) | |
ymin = min(ymin, self._node_coordinates[node][1]) | |
lim = max(xmax*1.1-xmin*0.8+1, ymax*1.1-ymin*0.8+1) | |
if lim==xmax*1.1-xmin*0.8+1: | |
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(xmin-0.05*lim, xmax*1.1), ylim=(xmin-0.05*lim, xmax*1.1), axis=False, rectangles=rectangles) | |
else: | |
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(ymin-0.05*lim, ymax*1.1), ylim=(ymin-0.05*lim, ymax*1.1), axis=False, rectangles=rectangles) | |
return sing_plot | |
def _draw_nodes(self, subs_dict): | |
node_markers = [] | |
for node in self._node_coordinates: | |
if (type(self._node_coordinates[node][0]) in (Symbol, Quantity)): | |
if self._node_coordinates[node][0] in subs_dict: | |
self._node_coordinates[node][0] = subs_dict[self._node_coordinates[node][0]] | |
else: | |
raise ValueError("provided substituted dictionary is not adequate") | |
elif (type(self._node_coordinates[node][0]) == Mul): | |
objects = self._node_coordinates[node][0].as_coeff_Mul() | |
for object in objects: | |
if type(object) in (Symbol, Quantity): | |
if subs_dict==None or object not in subs_dict: | |
raise ValueError("provided substituted dictionary is not adequate") | |
else: | |
self._node_coordinates[node][0] /= object | |
self._node_coordinates[node][0] *= subs_dict[object] | |
if (type(self._node_coordinates[node][1]) in (Symbol, Quantity)): | |
if self._node_coordinates[node][1] in subs_dict: | |
self._node_coordinates[node][1] = subs_dict[self._node_coordinates[node][1]] | |
else: | |
raise ValueError("provided substituted dictionary is not adequate") | |
elif (type(self._node_coordinates[node][1]) == Mul): | |
objects = self._node_coordinates[node][1].as_coeff_Mul() | |
for object in objects: | |
if type(object) in (Symbol, Quantity): | |
if subs_dict==None or object not in subs_dict: | |
raise ValueError("provided substituted dictionary is not adequate") | |
else: | |
self._node_coordinates[node][1] /= object | |
self._node_coordinates[node][1] *= subs_dict[object] | |
for node in self._node_coordinates: | |
node_markers.append( | |
{ | |
'args':[[self._node_coordinates[node][0]], [self._node_coordinates[node][1]]], | |
'marker':'o', | |
'markersize':5, | |
'color':'black' | |
} | |
) | |
return node_markers | |
def _draw_members(self): | |
member_rectangles = [] | |
xmax = -INF | |
xmin = INF | |
ymax = -INF | |
ymin = INF | |
for node in self._node_coordinates: | |
xmax = max(xmax, self._node_coordinates[node][0]) | |
xmin = min(xmin, self._node_coordinates[node][0]) | |
ymax = max(ymax, self._node_coordinates[node][1]) | |
ymin = min(ymin, self._node_coordinates[node][1]) | |
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin): | |
max_diff = 1.1*xmax-0.8*xmin | |
else: | |
max_diff = 1.1*ymax-0.8*ymin | |
for member in self._members: | |
x1 = self._node_coordinates[self._members[member][0]][0] | |
y1 = self._node_coordinates[self._members[member][0]][1] | |
x2 = self._node_coordinates[self._members[member][1]][0] | |
y2 = self._node_coordinates[self._members[member][1]][1] | |
if x2!=x1 and y2!=y1: | |
if x2>x1: | |
member_rectangles.append( | |
{ | |
'xy':(x1-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y1-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2), | |
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2), | |
'height':0.005*max_diff, | |
'angle':180*atan((y2-y1)/(x2-x1))/pi, | |
'color':'brown' | |
} | |
) | |
else: | |
member_rectangles.append( | |
{ | |
'xy':(x2-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y2-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2), | |
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2), | |
'height':0.005*max_diff, | |
'angle':180*atan((y2-y1)/(x2-x1))/pi, | |
'color':'brown' | |
} | |
) | |
elif y2==y1: | |
if x2>x1: | |
member_rectangles.append( | |
{ | |
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2), | |
'width':sqrt((x1-x2)**2+(y1-y2)**2), | |
'height':0.005*max_diff, | |
'angle':90*(1-math.copysign(1, x2-x1)), | |
'color':'brown' | |
} | |
) | |
else: | |
member_rectangles.append( | |
{ | |
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2), | |
'width':sqrt((x1-x2)**2+(y1-y2)**2), | |
'height':-0.005*max_diff, | |
'angle':90*(1-math.copysign(1, x2-x1)), | |
'color':'brown' | |
} | |
) | |
else: | |
if y1<y2: | |
member_rectangles.append( | |
{ | |
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2), | |
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2, | |
'height':0.005*max_diff, | |
'angle':90*math.copysign(1, y2-y1), | |
'color':'brown' | |
} | |
) | |
else: | |
member_rectangles.append( | |
{ | |
'xy':(x2-0.005*max_diff/2, y2-0.005*max_diff/2), | |
'width':-(sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2), | |
'height':0.005*max_diff, | |
'angle':90*math.copysign(1, y2-y1), | |
'color':'brown' | |
} | |
) | |
return member_rectangles | |
def _draw_supports(self): | |
support_markers = [] | |
xmax = -INF | |
xmin = INF | |
ymax = -INF | |
ymin = INF | |
for node in self._node_coordinates: | |
xmax = max(xmax, self._node_coordinates[node][0]) | |
xmin = min(xmin, self._node_coordinates[node][0]) | |
ymax = max(ymax, self._node_coordinates[node][1]) | |
ymin = min(ymin, self._node_coordinates[node][1]) | |
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin): | |
max_diff = 1.1*xmax-0.8*xmin | |
else: | |
max_diff = 1.1*ymax-0.8*ymin | |
for node in self._supports: | |
if self._supports[node]=='pinned': | |
support_markers.append( | |
{ | |
'args':[ | |
[self._node_coordinates[node][0]], | |
[self._node_coordinates[node][1]] | |
], | |
'marker':6, | |
'markersize':15, | |
'color':'black', | |
'markerfacecolor':'none' | |
} | |
) | |
support_markers.append( | |
{ | |
'args':[ | |
[self._node_coordinates[node][0]], | |
[self._node_coordinates[node][1]-0.035*max_diff] | |
], | |
'marker':'_', | |
'markersize':14, | |
'color':'black' | |
} | |
) | |
elif self._supports[node]=='roller': | |
support_markers.append( | |
{ | |
'args':[ | |
[self._node_coordinates[node][0]], | |
[self._node_coordinates[node][1]-0.02*max_diff] | |
], | |
'marker':'o', | |
'markersize':11, | |
'color':'black', | |
'markerfacecolor':'none' | |
} | |
) | |
support_markers.append( | |
{ | |
'args':[ | |
[self._node_coordinates[node][0]], | |
[self._node_coordinates[node][1]-0.0375*max_diff] | |
], | |
'marker':'_', | |
'markersize':14, | |
'color':'black' | |
} | |
) | |
return support_markers | |
def _draw_loads(self): | |
load_annotations = [] | |
xmax = -INF | |
xmin = INF | |
ymax = -INF | |
ymin = INF | |
for node in self._node_coordinates: | |
xmax = max(xmax, self._node_coordinates[node][0]) | |
xmin = min(xmin, self._node_coordinates[node][0]) | |
ymax = max(ymax, self._node_coordinates[node][1]) | |
ymin = min(ymin, self._node_coordinates[node][1]) | |
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin): | |
max_diff = 1.1*xmax-0.8*xmin+5 | |
else: | |
max_diff = 1.1*ymax-0.8*ymin+5 | |
for node in self._loads: | |
for load in self._loads[node]: | |
if load[0] in [Symbol('R_'+str(node)+'_x'), Symbol('R_'+str(node)+'_y')]: | |
continue | |
x = self._node_coordinates[node][0] | |
y = self._node_coordinates[node][1] | |
load_annotations.append( | |
{ | |
'text':'', | |
'xy':( | |
x-math.cos(pi*load[1]/180)*(max_diff/100), | |
y-math.sin(pi*load[1]/180)*(max_diff/100) | |
), | |
'xytext':( | |
x-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.cos(pi*load[1]/180)/20, | |
y-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.sin(pi*load[1]/180)/20 | |
), | |
'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'black'} | |
} | |
) | |
return load_annotations | |