Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
45 kB
"""
This module can be used to solve problems related
to 2D Trusses.
"""
from cmath import atan, inf
from sympy.core.add import Add
from sympy.core.evalf import INF
from sympy.core.mul import Mul
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy import Matrix, pi
from sympy.external.importtools import import_module
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import zeros
import math
from sympy.physics.units.quantities import Quantity
from sympy.plotting import plot
from sympy.utilities.decorator import doctest_depends_on
from sympy import sin, cos
__doctest_requires__ = {('Truss.draw'): ['matplotlib']}
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Truss:
"""
A Truss is an assembly of members such as beams,
connected by nodes, that create a rigid structure.
In engineering, a truss is a structure that
consists of two-force members only.
Trusses are extremely important in engineering applications
and can be seen in numerous real-world applications like bridges.
Examples
========
There is a Truss consisting of four nodes and five
members connecting the nodes. A force P acts
downward on the node D and there also exist pinned
and roller joints on the nodes A and B respectively.
.. image:: truss_example.png
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0))
>>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3"))
>>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4"))
>>> t.apply_load(("node_4", 10, 270))
>>> t.apply_support(("node_1", "pinned"), ("node_2", "roller"))
"""
def __init__(self):
"""
Initializes the class
"""
self._nodes = []
self._members = {}
self._loads = {}
self._supports = {}
self._node_labels = []
self._node_positions = []
self._node_position_x = []
self._node_position_y = []
self._nodes_occupied = {}
self._member_lengths = {}
self._reaction_loads = {}
self._internal_forces = {}
self._node_coordinates = {}
@property
def nodes(self):
"""
Returns the nodes of the truss along with their positions.
"""
return self._nodes
@property
def node_labels(self):
"""
Returns the node labels of the truss.
"""
return self._node_labels
@property
def node_positions(self):
"""
Returns the positions of the nodes of the truss.
"""
return self._node_positions
@property
def members(self):
"""
Returns the members of the truss along with the start and end points.
"""
return self._members
@property
def member_lengths(self):
"""
Returns the length of each member of the truss.
"""
return self._member_lengths
@property
def supports(self):
"""
Returns the nodes with provided supports along with the kind of support provided i.e.
pinned or roller.
"""
return self._supports
@property
def loads(self):
"""
Returns the loads acting on the truss.
"""
return self._loads
@property
def reaction_loads(self):
"""
Returns the reaction forces for all supports which are all initialized to 0.
"""
return self._reaction_loads
@property
def internal_forces(self):
"""
Returns the internal forces for all members which are all initialized to 0.
"""
return self._internal_forces
def add_node(self, *args):
"""
This method adds a node to the truss along with its name/label and its location.
Multiple nodes can be added at the same time.
Parameters
==========
The input(s) for this method are tuples of the form (label, x, y).
label: String or a Symbol
The label for a node. It is the only way to identify a particular node.
x: Sympifyable
The x-coordinate of the position of the node.
y: Sympifyable
The y-coordinate of the position of the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0))
>>> t.nodes
[('A', 0, 0)]
>>> t.add_node(('B', 3, 0), ('C', 4, 1))
>>> t.nodes
[('A', 0, 0), ('B', 3, 0), ('C', 4, 1)]
"""
for i in args:
label = i[0]
x = i[1]
x = sympify(x)
y=i[2]
y = sympify(y)
if label in self._node_coordinates:
raise ValueError("Node needs to have a unique label")
elif [x, y] in self._node_coordinates.values():
raise ValueError("A node already exists at the given position")
else :
self._nodes.append((label, x, y))
self._node_labels.append(label)
self._node_positions.append((x, y))
self._node_position_x.append(x)
self._node_position_y.append(y)
self._node_coordinates[label] = [x, y]
def remove_node(self, *args):
"""
This method removes a node from the truss.
Multiple nodes can be removed at the same time.
Parameters
==========
The input(s) for this method are the labels of the nodes to be removed.
label: String or Symbol
The label of the node to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 5, 0))
>>> t.nodes
[('A', 0, 0), ('B', 3, 0), ('C', 5, 0)]
>>> t.remove_node('A', 'C')
>>> t.nodes
[('B', 3, 0)]
"""
for label in args:
for i in range(len(self.nodes)):
if self._node_labels[i] == label:
x = self._node_position_x[i]
y = self._node_position_y[i]
if label not in self._node_coordinates:
raise ValueError("No such node exists in the truss")
else:
members_duplicate = self._members.copy()
for member in members_duplicate:
if label == self._members[member][0] or label == self._members[member][1]:
raise ValueError("The given node already has member attached to it")
self._nodes.remove((label, x, y))
self._node_labels.remove(label)
self._node_positions.remove((x, y))
self._node_position_x.remove(x)
self._node_position_y.remove(y)
if label in self._loads:
self._loads.pop(label)
if label in self._supports:
self._supports.pop(label)
self._node_coordinates.pop(label)
def add_member(self, *args):
"""
This method adds a member between any two nodes in the given truss.
Parameters
==========
The input(s) of the method are tuple(s) of the form (label, start, end).
label: String or Symbol
The label for a member. It is the only way to identify a particular member.
start: String or Symbol
The label of the starting point/node of the member.
end: String or Symbol
The label of the ending point/node of the member.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2))
>>> t.add_member(('AB', 'A', 'B'), ('BC', 'B', 'C'))
>>> t.members
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
"""
for i in args:
label = i[0]
start = i[1]
end = i[2]
if start not in self._node_coordinates or end not in self._node_coordinates or start==end:
raise ValueError("The start and end points of the member must be unique nodes")
elif label in self._members:
raise ValueError("A member with the same label already exists for the truss")
elif self._nodes_occupied.get((start, end)):
raise ValueError("A member already exists between the two nodes")
else:
self._members[label] = [start, end]
self._member_lengths[label] = sqrt((self._node_coordinates[end][0]-self._node_coordinates[start][0])**2 + (self._node_coordinates[end][1]-self._node_coordinates[start][1])**2)
self._nodes_occupied[start, end] = True
self._nodes_occupied[end, start] = True
self._internal_forces[label] = 0
def remove_member(self, *args):
"""
This method removes members from the given truss.
Parameters
==========
labels: String or Symbol
The label for the member to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2))
>>> t.add_member(('AB', 'A', 'B'), ('AC', 'A', 'C'), ('BC', 'B', 'C'))
>>> t.members
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
>>> t.remove_member('AC', 'BC')
>>> t.members
{'AB': ['A', 'B']}
"""
for label in args:
if label not in self._members:
raise ValueError("No such member exists in the Truss")
else:
self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
self._members.pop(label)
self._member_lengths.pop(label)
self._internal_forces.pop(label)
def change_node_label(self, *args):
"""
This method changes the label(s) of the specified node(s).
Parameters
==========
The input(s) of this method are tuple(s) of the form (label, new_label).
label: String or Symbol
The label of the node for which the label has
to be changed.
new_label: String or Symbol
The new label of the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0))
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.change_node_label(('A', 'C'), ('B', 'D'))
>>> t.nodes
[('C', 0, 0), ('D', 3, 0)]
"""
for i in args:
label = i[0]
new_label = i[1]
if label not in self._node_coordinates:
raise ValueError("No such node exists for the Truss")
elif new_label in self._node_coordinates:
raise ValueError("A node with the given label already exists")
else:
for node in self._nodes:
if node[0] == label:
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
self._node_labels[self._node_labels.index(node[0])] = new_label
self._node_coordinates[new_label] = self._node_coordinates[label]
self._node_coordinates.pop(label)
if node[0] in self._supports:
self._supports[new_label] = self._supports[node[0]]
self._supports.pop(node[0])
if new_label in self._supports:
if self._supports[new_label] == 'pinned':
if 'R_'+str(label)+'_x' in self._reaction_loads and 'R_'+str(label)+'_y' in self._reaction_loads:
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
self._reaction_loads.pop('R_'+str(label)+'_x')
self._reaction_loads.pop('R_'+str(label)+'_y')
self._loads[new_label] = self._loads[label]
for load in self._loads[new_label]:
if load[1] == 90:
load[0] -= Symbol('R_'+str(label)+'_y')
if load[0] == 0:
self._loads[label].remove(load)
break
for load in self._loads[new_label]:
if load[1] == 0:
load[0] -= Symbol('R_'+str(label)+'_x')
if load[0] == 0:
self._loads[label].remove(load)
break
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
self._loads.pop(label)
elif self._supports[new_label] == 'roller':
self._loads[new_label] = self._loads[label]
for load in self._loads[label]:
if load[1] == 90:
load[0] -= Symbol('R_'+str(label)+'_y')
if load[0] == 0:
self._loads[label].remove(load)
break
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
self._loads.pop(label)
else:
if label in self._loads:
self._loads[new_label] = self._loads[label]
self._loads.pop(label)
for member in self._members:
if self._members[member][0] == node[0]:
self._members[member][0] = new_label
self._nodes_occupied[(new_label, self._members[member][1])] = True
self._nodes_occupied[(self._members[member][1], new_label)] = True
self._nodes_occupied.pop((label, self._members[member][1]))
self._nodes_occupied.pop((self._members[member][1], label))
elif self._members[member][1] == node[0]:
self._members[member][1] = new_label
self._nodes_occupied[(self._members[member][0], new_label)] = True
self._nodes_occupied[(new_label, self._members[member][0])] = True
self._nodes_occupied.pop((self._members[member][0], label))
self._nodes_occupied.pop((label, self._members[member][0]))
def change_member_label(self, *args):
"""
This method changes the label(s) of the specified member(s).
Parameters
==========
The input(s) of this method are tuple(s) of the form (label, new_label)
label: String or Symbol
The label of the member for which the label has
to be changed.
new_label: String or Symbol
The new label of the member.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0), ('D', 5, 0))
>>> t.nodes
[('A', 0, 0), ('B', 3, 0), ('D', 5, 0)]
>>> t.change_node_label(('A', 'C'))
>>> t.nodes
[('C', 0, 0), ('B', 3, 0), ('D', 5, 0)]
>>> t.add_member(('BC', 'B', 'C'), ('BD', 'B', 'D'))
>>> t.members
{'BC': ['B', 'C'], 'BD': ['B', 'D']}
>>> t.change_member_label(('BC', 'BC_new'), ('BD', 'BD_new'))
>>> t.members
{'BC_new': ['B', 'C'], 'BD_new': ['B', 'D']}
"""
for i in args:
label = i[0]
new_label = i[1]
if label not in self._members:
raise ValueError("No such member exists for the Truss")
else:
members_duplicate = list(self._members).copy()
for member in members_duplicate:
if member == label:
self._members[new_label] = [self._members[member][0], self._members[member][1]]
self._members.pop(label)
self._member_lengths[new_label] = self._member_lengths[label]
self._member_lengths.pop(label)
self._internal_forces[new_label] = self._internal_forces[label]
self._internal_forces.pop(label)
def apply_load(self, *args):
"""
This method applies external load(s) at the specified node(s).
Parameters
==========
The input(s) of the method are tuple(s) of the form (location, magnitude, direction).
location: String or Symbol
Label of the Node at which load is applied.
magnitude: Sympifyable
Magnitude of the load applied. It must always be positive and any changes in
the direction of the load are not reflected here.
direction: Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0))
>>> P = symbols('P')
>>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90))
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
"""
for i in args:
location = i[0]
magnitude = i[1]
direction = i[2]
magnitude = sympify(magnitude)
direction = sympify(direction)
if location not in self._node_coordinates:
raise ValueError("Load must be applied at a known node")
else:
if location in self._loads:
self._loads[location].append([magnitude, direction])
else:
self._loads[location] = [[magnitude, direction]]
def remove_load(self, *args):
"""
This method removes already
present external load(s) at specified node(s).
Parameters
==========
The input(s) of this method are tuple(s) of the form (location, magnitude, direction).
location: String or Symbol
Label of the Node at which load is applied and is to be removed.
magnitude: Sympifyable
Magnitude of the load applied.
direction: Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0))
>>> P = symbols('P')
>>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90))
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
>>> t.remove_load(('A', P/4, 90), ('A', P/2, 45))
>>> t.loads
{'A': [[P, 90]]}
"""
for i in args:
location = i[0]
magnitude = i[1]
direction = i[2]
magnitude = sympify(magnitude)
direction = sympify(direction)
if location not in self._node_coordinates:
raise ValueError("Load must be removed from a known node")
else:
if [magnitude, direction] not in self._loads[location]:
raise ValueError("No load of this magnitude and direction has been applied at this node")
else:
self._loads[location].remove([magnitude, direction])
if self._loads[location] == []:
self._loads.pop(location)
def apply_support(self, *args):
"""
This method adds a pinned or roller support at specified node(s).
Parameters
==========
The input(s) of this method are of the form (location, type).
location: String or Symbol
Label of the Node at which support is added.
type: String
Type of the support being provided at the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0))
>>> t.apply_support(('A', 'pinned'), ('B', 'roller'))
>>> t.supports
{'A': 'pinned', 'B': 'roller'}
"""
for i in args:
location = i[0]
type = i[1]
if location not in self._node_coordinates:
raise ValueError("Support must be added on a known node")
else:
if location not in self._supports:
if type == 'pinned':
self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0))
self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90))
elif type == 'roller':
self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90))
elif self._supports[location] == 'pinned':
if type == 'roller':
self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0))
elif self._supports[location] == 'roller':
if type == 'pinned':
self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0))
self._supports[location] = type
def remove_support(self, *args):
"""
This method removes support from specified node(s.)
Parameters
==========
locations: String or Symbol
Label of the Node(s) at which support is to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(('A', 0, 0), ('B', 3, 0))
>>> t.apply_support(('A', 'pinned'), ('B', 'roller'))
>>> t.supports
{'A': 'pinned', 'B': 'roller'}
>>> t.remove_support('A','B')
>>> t.supports
{}
"""
for location in args:
if location not in self._node_coordinates:
raise ValueError("No such node exists in the Truss")
elif location not in self._supports:
raise ValueError("No support has been added to the given node")
else:
if self._supports[location] == 'pinned':
self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0))
self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90))
elif self._supports[location] == 'roller':
self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90))
self._supports.pop(location)
def solve(self):
"""
This method solves for all reaction forces of all supports and all internal forces
of all the members in the truss, provided the Truss is solvable.
A Truss is solvable if the following condition is met,
2n >= r + m
Where n is the number of nodes, r is the number of reaction forces, where each pinned
support has 2 reaction forces and each roller has 1, and m is the number of members.
The given condition is derived from the fact that a system of equations is solvable
only when the number of variables is lesser than or equal to the number of equations.
Equilibrium Equations in x and y directions give two equations per node giving 2n number
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
The number of variables is simply the sum of the number of reaction forces and member
forces.
.. note::
The sign convention for the internal forces present in a member revolves around whether each
force is compressive or tensile. While forming equations for each node, internal force due
to a member on the node is assumed to be away from the node i.e. each force is assumed to
be compressive by default. Hence, a positive value for an internal force implies the
presence of compressive force in the member and a negative value implies a tensile force.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0))
>>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3"))
>>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4"))
>>> t.apply_load(("node_4", 10, 270))
>>> t.apply_support(("node_1", "pinned"), ("node_2", "roller"))
>>> t.solve()
>>> t.reaction_loads
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
>>> t.internal_forces
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
"""
count_reaction_loads = 0
for node in self._nodes:
if node[0] in self._supports:
if self._supports[node[0]]=='pinned':
count_reaction_loads += 2
elif self._supports[node[0]]=='roller':
count_reaction_loads += 1
if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
raise ValueError("The given truss cannot be solved")
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
load_matrix = zeros(2*len(self.nodes), 1)
load_matrix_row = 0
for node in self._nodes:
if node[0] in self._loads:
for load in self._loads[node[0]]:
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
load_matrix_row += 2
cols = 0
row = 0
for node in self._nodes:
if node[0] in self._supports:
if self._supports[node[0]]=='pinned':
coefficients_matrix[row][cols] += 1
coefficients_matrix[row+1][cols+1] += 1
cols += 2
elif self._supports[node[0]]=='roller':
coefficients_matrix[row+1][cols] += 1
cols += 1
row += 2
for member in self._members:
start = self._members[member][0]
end = self._members[member][1]
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
start_index = self._node_labels.index(start)
end_index = self._node_labels.index(end)
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
coefficients_matrix[start_index*2][cols] += horizontal_component_start
coefficients_matrix[start_index*2+1][cols] += vertical_component_start
coefficients_matrix[end_index*2][cols] += horizontal_component_end
coefficients_matrix[end_index*2+1][cols] += vertical_component_end
cols += 1
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
self._reaction_loads = {}
i = 0
min_load = inf
for node in self._nodes:
if node[0] in self._loads:
for load in self._loads[node[0]]:
if type(load[0]) not in [Symbol, Mul, Add]:
min_load = min(min_load, load[0])
for j in range(len(forces_matrix)):
if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
if abs(forces_matrix[j]/min_load) <1E-10:
forces_matrix[j] = 0
for node in self._nodes:
if node[0] in self._supports:
if self._supports[node[0]]=='pinned':
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
i += 2
elif self._supports[node[0]]=='roller':
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
i += 1
for member in self._members:
self._internal_forces[member] = forces_matrix[i]
i += 1
return
@doctest_depends_on(modules=('numpy',))
def draw(self, subs_dict=None):
"""
Returns a plot object of the Truss with all its nodes, members,
supports and loads.
.. note::
The user must be careful while entering load values in their
directions. The draw function assumes a sign convention that
is used for plotting loads.
Given a right-handed coordinate system with XYZ coordinates,
the supports are assumed to be such that the reaction forces of a
pinned support is in the +X and +Y direction while those of a
roller support is in the +Y direction. For the load, the range
of angles, one can input goes all the way to 360 degrees which, in the
the plot is the angle that the load vector makes with the positive x-axis in the anticlockwise direction.
For example, for a 90-degree angle, the load will be a vertically
directed along +Y while a 270-degree angle denotes a vertical
load as well but along -Y.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> import math
>>> t = Truss()
>>> t.add_node(("A", -4, 0), ("B", 0, 0), ("C", 4, 0), ("D", 8, 0))
>>> t.add_node(("E", 6, 2/math.sqrt(3)))
>>> t.add_node(("F", 2, 2*math.sqrt(3)))
>>> t.add_node(("G", -2, 2/math.sqrt(3)))
>>> t.add_member(("AB","A","B"), ("BC","B","C"), ("CD","C","D"))
>>> t.add_member(("AG","A","G"), ("GB","G","B"), ("GF","G","F"))
>>> t.add_member(("BF","B","F"), ("FC","F","C"), ("CE","C","E"))
>>> t.add_member(("FE","F","E"), ("DE","D","E"))
>>> t.apply_support(("A","pinned"), ("D","roller"))
>>> t.apply_load(("G", 3, 90), ("E", 3, 90), ("F", 2, 90))
>>> p = t.draw()
>>> p # doctest: +ELLIPSIS
Plot object containing:
[0]: cartesian line: 1 for x over (1.0, 1.0)
...
>>> p.show()
"""
if not numpy:
raise ImportError("To use this function numpy module is required")
x = Symbol('x')
markers = []
annotations = []
rectangles = []
node_markers = self._draw_nodes(subs_dict)
markers += node_markers
member_rectangles = self._draw_members()
rectangles += member_rectangles
support_markers = self._draw_supports()
markers += support_markers
load_annotations = self._draw_loads()
annotations += load_annotations
xmax = -INF
xmin = INF
ymax = -INF
ymin = INF
for node in self._node_coordinates:
xmax = max(xmax, self._node_coordinates[node][0])
xmin = min(xmin, self._node_coordinates[node][0])
ymax = max(ymax, self._node_coordinates[node][1])
ymin = min(ymin, self._node_coordinates[node][1])
lim = max(xmax*1.1-xmin*0.8+1, ymax*1.1-ymin*0.8+1)
if lim==xmax*1.1-xmin*0.8+1:
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(xmin-0.05*lim, xmax*1.1), ylim=(xmin-0.05*lim, xmax*1.1), axis=False, rectangles=rectangles)
else:
sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(ymin-0.05*lim, ymax*1.1), ylim=(ymin-0.05*lim, ymax*1.1), axis=False, rectangles=rectangles)
return sing_plot
def _draw_nodes(self, subs_dict):
node_markers = []
for node in self._node_coordinates:
if (type(self._node_coordinates[node][0]) in (Symbol, Quantity)):
if self._node_coordinates[node][0] in subs_dict:
self._node_coordinates[node][0] = subs_dict[self._node_coordinates[node][0]]
else:
raise ValueError("provided substituted dictionary is not adequate")
elif (type(self._node_coordinates[node][0]) == Mul):
objects = self._node_coordinates[node][0].as_coeff_Mul()
for object in objects:
if type(object) in (Symbol, Quantity):
if subs_dict==None or object not in subs_dict:
raise ValueError("provided substituted dictionary is not adequate")
else:
self._node_coordinates[node][0] /= object
self._node_coordinates[node][0] *= subs_dict[object]
if (type(self._node_coordinates[node][1]) in (Symbol, Quantity)):
if self._node_coordinates[node][1] in subs_dict:
self._node_coordinates[node][1] = subs_dict[self._node_coordinates[node][1]]
else:
raise ValueError("provided substituted dictionary is not adequate")
elif (type(self._node_coordinates[node][1]) == Mul):
objects = self._node_coordinates[node][1].as_coeff_Mul()
for object in objects:
if type(object) in (Symbol, Quantity):
if subs_dict==None or object not in subs_dict:
raise ValueError("provided substituted dictionary is not adequate")
else:
self._node_coordinates[node][1] /= object
self._node_coordinates[node][1] *= subs_dict[object]
for node in self._node_coordinates:
node_markers.append(
{
'args':[[self._node_coordinates[node][0]], [self._node_coordinates[node][1]]],
'marker':'o',
'markersize':5,
'color':'black'
}
)
return node_markers
def _draw_members(self):
member_rectangles = []
xmax = -INF
xmin = INF
ymax = -INF
ymin = INF
for node in self._node_coordinates:
xmax = max(xmax, self._node_coordinates[node][0])
xmin = min(xmin, self._node_coordinates[node][0])
ymax = max(ymax, self._node_coordinates[node][1])
ymin = min(ymin, self._node_coordinates[node][1])
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
for member in self._members:
x1 = self._node_coordinates[self._members[member][0]][0]
y1 = self._node_coordinates[self._members[member][0]][1]
x2 = self._node_coordinates[self._members[member][1]][0]
y2 = self._node_coordinates[self._members[member][1]][1]
if x2!=x1 and y2!=y1:
if x2>x1:
member_rectangles.append(
{
'xy':(x1-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y1-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2),
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2),
'height':0.005*max_diff,
'angle':180*atan((y2-y1)/(x2-x1))/pi,
'color':'brown'
}
)
else:
member_rectangles.append(
{
'xy':(x2-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y2-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2),
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2),
'height':0.005*max_diff,
'angle':180*atan((y2-y1)/(x2-x1))/pi,
'color':'brown'
}
)
elif y2==y1:
if x2>x1:
member_rectangles.append(
{
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
'width':sqrt((x1-x2)**2+(y1-y2)**2),
'height':0.005*max_diff,
'angle':90*(1-math.copysign(1, x2-x1)),
'color':'brown'
}
)
else:
member_rectangles.append(
{
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
'width':sqrt((x1-x2)**2+(y1-y2)**2),
'height':-0.005*max_diff,
'angle':90*(1-math.copysign(1, x2-x1)),
'color':'brown'
}
)
else:
if y1<y2:
member_rectangles.append(
{
'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2,
'height':0.005*max_diff,
'angle':90*math.copysign(1, y2-y1),
'color':'brown'
}
)
else:
member_rectangles.append(
{
'xy':(x2-0.005*max_diff/2, y2-0.005*max_diff/2),
'width':-(sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2),
'height':0.005*max_diff,
'angle':90*math.copysign(1, y2-y1),
'color':'brown'
}
)
return member_rectangles
def _draw_supports(self):
support_markers = []
xmax = -INF
xmin = INF
ymax = -INF
ymin = INF
for node in self._node_coordinates:
xmax = max(xmax, self._node_coordinates[node][0])
xmin = min(xmin, self._node_coordinates[node][0])
ymax = max(ymax, self._node_coordinates[node][1])
ymin = min(ymin, self._node_coordinates[node][1])
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin
else:
max_diff = 1.1*ymax-0.8*ymin
for node in self._supports:
if self._supports[node]=='pinned':
support_markers.append(
{
'args':[
[self._node_coordinates[node][0]],
[self._node_coordinates[node][1]]
],
'marker':6,
'markersize':15,
'color':'black',
'markerfacecolor':'none'
}
)
support_markers.append(
{
'args':[
[self._node_coordinates[node][0]],
[self._node_coordinates[node][1]-0.035*max_diff]
],
'marker':'_',
'markersize':14,
'color':'black'
}
)
elif self._supports[node]=='roller':
support_markers.append(
{
'args':[
[self._node_coordinates[node][0]],
[self._node_coordinates[node][1]-0.02*max_diff]
],
'marker':'o',
'markersize':11,
'color':'black',
'markerfacecolor':'none'
}
)
support_markers.append(
{
'args':[
[self._node_coordinates[node][0]],
[self._node_coordinates[node][1]-0.0375*max_diff]
],
'marker':'_',
'markersize':14,
'color':'black'
}
)
return support_markers
def _draw_loads(self):
load_annotations = []
xmax = -INF
xmin = INF
ymax = -INF
ymin = INF
for node in self._node_coordinates:
xmax = max(xmax, self._node_coordinates[node][0])
xmin = min(xmin, self._node_coordinates[node][0])
ymax = max(ymax, self._node_coordinates[node][1])
ymin = min(ymin, self._node_coordinates[node][1])
if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
max_diff = 1.1*xmax-0.8*xmin+5
else:
max_diff = 1.1*ymax-0.8*ymin+5
for node in self._loads:
for load in self._loads[node]:
if load[0] in [Symbol('R_'+str(node)+'_x'), Symbol('R_'+str(node)+'_y')]:
continue
x = self._node_coordinates[node][0]
y = self._node_coordinates[node][1]
load_annotations.append(
{
'text':'',
'xy':(
x-math.cos(pi*load[1]/180)*(max_diff/100),
y-math.sin(pi*load[1]/180)*(max_diff/100)
),
'xytext':(
x-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.cos(pi*load[1]/180)/20,
y-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.sin(pi*load[1]/180)/20
),
'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'black'}
}
)
return load_annotations