File size: 44,962 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
"""
This module can be used to solve problems related
to 2D Trusses.
"""


from cmath import atan, inf
from sympy.core.add import Add
from sympy.core.evalf import INF
from sympy.core.mul import Mul
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy import Matrix, pi
from sympy.external.importtools import import_module
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import zeros
import math
from sympy.physics.units.quantities import Quantity
from sympy.plotting import plot
from sympy.utilities.decorator import doctest_depends_on
from sympy import sin, cos


__doctest_requires__ = {('Truss.draw'): ['matplotlib']}


numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})


class Truss:
    """
    A Truss is an assembly of members such as beams,
    connected by nodes, that create a rigid structure.
    In engineering, a truss is a structure that
    consists of two-force members only.

    Trusses are extremely important in engineering applications
    and can be seen in numerous real-world applications like bridges.

    Examples
    ========

    There is a Truss consisting of four nodes and five
    members connecting the nodes. A force P acts
    downward on the node D and there also exist pinned
    and roller joints on the nodes A and B respectively.

    .. image:: truss_example.png

    >>> from sympy.physics.continuum_mechanics.truss import Truss
    >>> t = Truss()
    >>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0))
    >>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3"))
    >>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4"))
    >>> t.apply_load(("node_4", 10, 270))
    >>> t.apply_support(("node_1", "pinned"), ("node_2", "roller"))
    """

    def __init__(self):
        """
        Initializes the class
        """
        self._nodes = []
        self._members = {}
        self._loads = {}
        self._supports = {}
        self._node_labels = []
        self._node_positions = []
        self._node_position_x = []
        self._node_position_y = []
        self._nodes_occupied = {}
        self._member_lengths = {}
        self._reaction_loads = {}
        self._internal_forces = {}
        self._node_coordinates = {}

    @property
    def nodes(self):
        """
        Returns the nodes of the truss along with their positions.
        """
        return self._nodes

    @property
    def node_labels(self):
        """
        Returns the node labels of the truss.
        """
        return self._node_labels

    @property
    def node_positions(self):
        """
        Returns the positions of the nodes of the truss.
        """
        return self._node_positions

    @property
    def members(self):
        """
        Returns the members of the truss along with the start and end points.
        """
        return self._members

    @property
    def member_lengths(self):
        """
        Returns the length of each member of the truss.
        """
        return self._member_lengths

    @property
    def supports(self):
        """
        Returns the nodes with provided supports along with the kind of support provided i.e.
        pinned or roller.
        """
        return self._supports

    @property
    def loads(self):
        """
        Returns the loads acting on the truss.
        """
        return self._loads

    @property
    def reaction_loads(self):
        """
        Returns the reaction forces for all supports which are all initialized to 0.
        """
        return self._reaction_loads

    @property
    def internal_forces(self):
        """
        Returns the internal forces for all members which are all initialized to 0.
        """
        return self._internal_forces

    def add_node(self, *args):
        """
        This method adds a node to the truss along with its name/label and its location.
        Multiple nodes can be added at the same time.

        Parameters
        ==========
        The input(s) for this method are tuples of the form (label, x, y).

        label:  String or a Symbol
            The label for a node. It is the only way to identify a particular node.

        x: Sympifyable
            The x-coordinate of the position of the node.

        y: Sympifyable
            The y-coordinate of the position of the node.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0))
        >>> t.nodes
        [('A', 0, 0)]
        >>> t.add_node(('B', 3, 0), ('C', 4, 1))
        >>> t.nodes
        [('A', 0, 0), ('B', 3, 0), ('C', 4, 1)]
        """

        for i in args:
            label = i[0]
            x = i[1]
            x = sympify(x)
            y=i[2]
            y = sympify(y)
            if label in self._node_coordinates:
                raise ValueError("Node needs to have a unique label")

            elif [x, y] in self._node_coordinates.values():
                raise ValueError("A node already exists at the given position")

            else :
                self._nodes.append((label, x, y))
                self._node_labels.append(label)
                self._node_positions.append((x, y))
                self._node_position_x.append(x)
                self._node_position_y.append(y)
                self._node_coordinates[label] = [x, y]



    def remove_node(self, *args):
        """
        This method removes a node from the truss.
        Multiple nodes can be removed at the same time.

        Parameters
        ==========
        The input(s) for this method are the labels of the nodes to be removed.

        label:  String or Symbol
            The label of the node to be removed.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 5, 0))
        >>> t.nodes
        [('A', 0, 0), ('B', 3, 0), ('C', 5, 0)]
        >>> t.remove_node('A', 'C')
        >>> t.nodes
        [('B', 3, 0)]
        """
        for label in args:
            for i in range(len(self.nodes)):
                if self._node_labels[i] == label:
                    x = self._node_position_x[i]
                    y = self._node_position_y[i]

            if label not in self._node_coordinates:
                raise ValueError("No such node exists in the truss")

            else:
                members_duplicate = self._members.copy()
                for member in members_duplicate:
                    if label == self._members[member][0] or label == self._members[member][1]:
                        raise ValueError("The given node already has member attached to it")
                self._nodes.remove((label, x, y))
                self._node_labels.remove(label)
                self._node_positions.remove((x, y))
                self._node_position_x.remove(x)
                self._node_position_y.remove(y)
                if label in self._loads:
                    self._loads.pop(label)
                if label in self._supports:
                    self._supports.pop(label)
                self._node_coordinates.pop(label)



    def add_member(self, *args):
        """
        This method adds a member between any two nodes in the given truss.

        Parameters
        ==========
        The input(s) of the method are tuple(s) of the form (label, start, end).

        label: String or Symbol
            The label for a member. It is the only way to identify a particular member.

        start: String or Symbol
            The label of the starting point/node of the member.

        end: String or Symbol
            The label of the ending point/node of the member.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2))
        >>> t.add_member(('AB', 'A', 'B'), ('BC', 'B', 'C'))
        >>> t.members
        {'AB': ['A', 'B'], 'BC': ['B', 'C']}
        """
        for i in args:
            label = i[0]
            start = i[1]
            end = i[2]

            if start not in self._node_coordinates or end not in self._node_coordinates or start==end:
                raise ValueError("The start and end points of the member must be unique nodes")

            elif label in self._members:
                raise ValueError("A member with the same label already exists for the truss")

            elif self._nodes_occupied.get((start, end)):
                raise ValueError("A member already exists between the two nodes")

            else:
                self._members[label] = [start, end]
                self._member_lengths[label] = sqrt((self._node_coordinates[end][0]-self._node_coordinates[start][0])**2 + (self._node_coordinates[end][1]-self._node_coordinates[start][1])**2)
                self._nodes_occupied[start, end] = True
                self._nodes_occupied[end, start] = True
                self._internal_forces[label] = 0

    def remove_member(self, *args):
        """
        This method removes members from the given truss.

        Parameters
        ==========
        labels: String or Symbol
            The label for the member to be removed.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0), ('C', 2, 2))
        >>> t.add_member(('AB', 'A', 'B'), ('AC', 'A', 'C'), ('BC', 'B', 'C'))
        >>> t.members
        {'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
        >>> t.remove_member('AC', 'BC')
        >>> t.members
        {'AB': ['A', 'B']}
        """
        for label in args:
            if label not in self._members:
                raise ValueError("No such member exists in the Truss")

            else:
                self._nodes_occupied.pop((self._members[label][0], self._members[label][1]))
                self._nodes_occupied.pop((self._members[label][1], self._members[label][0]))
                self._members.pop(label)
                self._member_lengths.pop(label)
                self._internal_forces.pop(label)

    def change_node_label(self, *args):
        """
        This method changes the label(s) of the specified node(s).

        Parameters
        ==========
        The input(s) of this method are tuple(s) of the form (label, new_label).

        label: String or Symbol
            The label of the node for which the label has
            to be changed.

        new_label: String or Symbol
            The new label of the node.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0))
        >>> t.nodes
        [('A', 0, 0), ('B', 3, 0)]
        >>> t.change_node_label(('A', 'C'), ('B', 'D'))
        >>> t.nodes
        [('C', 0, 0), ('D', 3, 0)]
        """
        for i in args:
            label = i[0]
            new_label = i[1]
            if label not in self._node_coordinates:
                raise ValueError("No such node exists for the Truss")
            elif new_label in self._node_coordinates:
                raise ValueError("A node with the given label already exists")
            else:
                for node in self._nodes:
                    if node[0] == label:
                        self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
                        self._node_labels[self._node_labels.index(node[0])] = new_label
                        self._node_coordinates[new_label] = self._node_coordinates[label]
                        self._node_coordinates.pop(label)
                        if node[0] in self._supports:
                            self._supports[new_label] = self._supports[node[0]]
                            self._supports.pop(node[0])
                        if new_label in self._supports:
                            if self._supports[new_label] == 'pinned':
                                if 'R_'+str(label)+'_x' in self._reaction_loads and 'R_'+str(label)+'_y' in self._reaction_loads:
                                    self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
                                    self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
                                    self._reaction_loads.pop('R_'+str(label)+'_x')
                                    self._reaction_loads.pop('R_'+str(label)+'_y')
                                self._loads[new_label] = self._loads[label]
                                for load in self._loads[new_label]:
                                    if load[1] == 90:
                                        load[0] -= Symbol('R_'+str(label)+'_y')
                                        if load[0] == 0:
                                            self._loads[label].remove(load)
                                        break
                                for load in self._loads[new_label]:
                                    if load[1] == 0:
                                        load[0] -= Symbol('R_'+str(label)+'_x')
                                        if load[0] == 0:
                                            self._loads[label].remove(load)
                                        break
                                self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
                                self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
                                self._loads.pop(label)
                            elif self._supports[new_label] == 'roller':
                                self._loads[new_label] = self._loads[label]
                                for load in self._loads[label]:
                                    if load[1] == 90:
                                        load[0] -= Symbol('R_'+str(label)+'_y')
                                        if load[0] == 0:
                                            self._loads[label].remove(load)
                                        break
                                self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
                                self._loads.pop(label)
                        else:
                            if label in self._loads:
                                self._loads[new_label] = self._loads[label]
                                self._loads.pop(label)
                        for member in self._members:
                            if self._members[member][0] == node[0]:
                                self._members[member][0] = new_label
                                self._nodes_occupied[(new_label, self._members[member][1])] = True
                                self._nodes_occupied[(self._members[member][1], new_label)] = True
                                self._nodes_occupied.pop((label, self._members[member][1]))
                                self._nodes_occupied.pop((self._members[member][1], label))
                            elif self._members[member][1] == node[0]:
                                self._members[member][1] = new_label
                                self._nodes_occupied[(self._members[member][0], new_label)] = True
                                self._nodes_occupied[(new_label, self._members[member][0])] = True
                                self._nodes_occupied.pop((self._members[member][0], label))
                                self._nodes_occupied.pop((label, self._members[member][0]))

    def change_member_label(self, *args):
        """
        This method changes the label(s) of the specified member(s).

        Parameters
        ==========
        The input(s) of this method are tuple(s) of the form (label, new_label)

        label: String or Symbol
            The label of the member for which the label has
            to be changed.

        new_label: String or Symbol
            The new label of the member.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0), ('D', 5, 0))
        >>> t.nodes
        [('A', 0, 0), ('B', 3, 0), ('D', 5, 0)]
        >>> t.change_node_label(('A', 'C'))
        >>> t.nodes
        [('C', 0, 0), ('B', 3, 0), ('D', 5, 0)]
        >>> t.add_member(('BC', 'B', 'C'), ('BD', 'B', 'D'))
        >>> t.members
        {'BC': ['B', 'C'], 'BD': ['B', 'D']}
        >>> t.change_member_label(('BC', 'BC_new'), ('BD', 'BD_new'))
        >>> t.members
        {'BC_new': ['B', 'C'], 'BD_new': ['B', 'D']}
        """
        for i in args:
            label = i[0]
            new_label = i[1]
            if label not in self._members:
                raise ValueError("No such member exists for the Truss")
            else:
                members_duplicate = list(self._members).copy()
                for member in members_duplicate:
                    if member == label:
                        self._members[new_label] = [self._members[member][0], self._members[member][1]]
                        self._members.pop(label)
                        self._member_lengths[new_label] = self._member_lengths[label]
                        self._member_lengths.pop(label)
                        self._internal_forces[new_label] = self._internal_forces[label]
                        self._internal_forces.pop(label)

    def apply_load(self, *args):
        """
        This method applies external load(s) at the specified node(s).

        Parameters
        ==========
        The input(s) of the method are tuple(s) of the form (location, magnitude, direction).

        location: String or Symbol
            Label of the Node at which load is applied.

        magnitude: Sympifyable
            Magnitude of the load applied. It must always be positive and any changes in
            the direction of the load are not reflected here.

        direction: Sympifyable
            The angle, in degrees, that the load vector makes with the horizontal
            in the counter-clockwise direction. It takes the values 0 to 360,
            inclusive.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> from sympy import symbols
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0))
        >>> P = symbols('P')
        >>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90))
        >>> t.loads
        {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
        """
        for i in args:
            location = i[0]
            magnitude = i[1]
            direction = i[2]
            magnitude = sympify(magnitude)
            direction = sympify(direction)

            if location not in self._node_coordinates:
                raise ValueError("Load must be applied at a known node")

            else:
                if location in self._loads:
                    self._loads[location].append([magnitude, direction])
                else:
                    self._loads[location] = [[magnitude, direction]]

    def remove_load(self, *args):
        """
        This method removes already
        present external load(s) at specified node(s).

        Parameters
        ==========
        The input(s) of this method are tuple(s) of the form (location, magnitude, direction).

        location: String or Symbol
            Label of the Node at which load is applied and is to be removed.

        magnitude: Sympifyable
            Magnitude of the load applied.

        direction: Sympifyable
            The angle, in degrees, that the load vector makes with the horizontal
            in the counter-clockwise direction. It takes the values 0 to 360,
            inclusive.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> from sympy import symbols
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0))
        >>> P = symbols('P')
        >>> t.apply_load(('A', P, 90), ('A', P/2, 45), ('A', P/4, 90))
        >>> t.loads
        {'A': [[P, 90], [P/2, 45], [P/4, 90]]}
        >>> t.remove_load(('A', P/4, 90), ('A', P/2, 45))
        >>> t.loads
        {'A': [[P, 90]]}
        """
        for i in args:
            location = i[0]
            magnitude = i[1]
            direction = i[2]
            magnitude = sympify(magnitude)
            direction = sympify(direction)

            if location not in self._node_coordinates:
                raise ValueError("Load must be removed from a known node")

            else:
                if [magnitude, direction] not in self._loads[location]:
                    raise ValueError("No load of this magnitude and direction has been applied at this node")
                else:
                    self._loads[location].remove([magnitude, direction])
            if self._loads[location] == []:
                self._loads.pop(location)

    def apply_support(self, *args):
        """
        This method adds a pinned or roller support at specified node(s).

        Parameters
        ==========
        The input(s) of this method are of the form (location, type).

        location: String or Symbol
            Label of the Node at which support is added.

        type: String
            Type of the support being provided at the node.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0))
        >>> t.apply_support(('A', 'pinned'), ('B', 'roller'))
        >>> t.supports
        {'A': 'pinned', 'B': 'roller'}
        """
        for i in args:
            location = i[0]
            type = i[1]
            if location not in self._node_coordinates:
                raise ValueError("Support must be added on a known node")

            else:
                if location not in self._supports:
                    if type == 'pinned':
                        self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0))
                        self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90))
                    elif type == 'roller':
                        self.apply_load((location, Symbol('R_'+str(location)+'_y'), 90))
                elif self._supports[location] == 'pinned':
                    if type == 'roller':
                        self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0))
                elif self._supports[location] == 'roller':
                    if type == 'pinned':
                        self.apply_load((location, Symbol('R_'+str(location)+'_x'), 0))
                self._supports[location] = type

    def remove_support(self, *args):
        """
        This method removes support from specified node(s.)

        Parameters
        ==========

        locations: String or Symbol
            Label of the Node(s) at which support is to be removed.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(('A', 0, 0), ('B', 3, 0))
        >>> t.apply_support(('A', 'pinned'), ('B', 'roller'))
        >>> t.supports
        {'A': 'pinned', 'B': 'roller'}
        >>> t.remove_support('A','B')
        >>> t.supports
        {}
        """
        for location in args:

            if location not in self._node_coordinates:
                raise ValueError("No such node exists in the Truss")

            elif location not in self._supports:
                raise ValueError("No support has been added to the given node")

            else:
                if self._supports[location] == 'pinned':
                    self.remove_load((location, Symbol('R_'+str(location)+'_x'), 0))
                    self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90))
                elif self._supports[location] == 'roller':
                    self.remove_load((location, Symbol('R_'+str(location)+'_y'), 90))
                self._supports.pop(location)

    def solve(self):
        """
        This method solves for all reaction forces of all supports and all internal forces
        of all the members in the truss, provided the Truss is solvable.

        A Truss is solvable if the following condition is met,

        2n >= r + m

        Where n is the number of nodes, r is the number of reaction forces, where each pinned
        support has 2 reaction forces and each roller has 1, and m is the number of members.

        The given condition is derived from the fact that a system of equations is solvable
        only when the number of variables is lesser than or equal to the number of equations.
        Equilibrium Equations in x and y directions give two equations per node giving 2n number
        equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
        The number of variables is simply the sum of the number of reaction forces and member
        forces.

        .. note::
           The sign convention for the internal forces present in a member revolves around whether each
           force is compressive or tensile. While forming equations for each node, internal force due
           to a member on the node is assumed to be away from the node i.e. each force is assumed to
           be compressive by default. Hence, a positive value for an internal force implies the
           presence of compressive force in the member and a negative value implies a tensile force.

        Examples
        ========

        >>> from sympy.physics.continuum_mechanics.truss import Truss
        >>> t = Truss()
        >>> t.add_node(("node_1", 0, 0), ("node_2", 6, 0), ("node_3", 2, 2), ("node_4", 2, 0))
        >>> t.add_member(("member_1", "node_1", "node_4"), ("member_2", "node_2", "node_4"), ("member_3", "node_1", "node_3"))
        >>> t.add_member(("member_4", "node_2", "node_3"), ("member_5", "node_3", "node_4"))
        >>> t.apply_load(("node_4", 10, 270))
        >>> t.apply_support(("node_1", "pinned"), ("node_2", "roller"))
        >>> t.solve()
        >>> t.reaction_loads
        {'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
        >>> t.internal_forces
        {'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
        """
        count_reaction_loads = 0
        for node in self._nodes:
            if node[0] in self._supports:
                if self._supports[node[0]]=='pinned':
                    count_reaction_loads += 2
                elif self._supports[node[0]]=='roller':
                    count_reaction_loads += 1
        if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
            raise ValueError("The given truss cannot be solved")
        coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
        load_matrix = zeros(2*len(self.nodes), 1)
        load_matrix_row = 0
        for node in self._nodes:
            if node[0] in self._loads:
                for load in self._loads[node[0]]:
                    if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
                        load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
                        load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
            load_matrix_row += 2
        cols = 0
        row = 0
        for node in self._nodes:
            if node[0] in self._supports:
                if self._supports[node[0]]=='pinned':
                    coefficients_matrix[row][cols] += 1
                    coefficients_matrix[row+1][cols+1] += 1
                    cols += 2
                elif self._supports[node[0]]=='roller':
                    coefficients_matrix[row+1][cols] += 1
                    cols += 1
            row += 2
        for member in self._members:
            start = self._members[member][0]
            end = self._members[member][1]
            length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
            start_index = self._node_labels.index(start)
            end_index = self._node_labels.index(end)
            horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
            vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
            horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
            vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
            coefficients_matrix[start_index*2][cols] += horizontal_component_start
            coefficients_matrix[start_index*2+1][cols] += vertical_component_start
            coefficients_matrix[end_index*2][cols] += horizontal_component_end
            coefficients_matrix[end_index*2+1][cols] += vertical_component_end
            cols += 1
        forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
        self._reaction_loads = {}
        i = 0
        min_load = inf
        for node in self._nodes:
            if node[0] in self._loads:
                for load in self._loads[node[0]]:
                    if type(load[0]) not in [Symbol, Mul, Add]:
                        min_load = min(min_load, load[0])
        for j in range(len(forces_matrix)):
            if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
                if abs(forces_matrix[j]/min_load) <1E-10:
                    forces_matrix[j] = 0
        for node in self._nodes:
            if node[0] in self._supports:
                if self._supports[node[0]]=='pinned':
                    self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
                    self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
                    i += 2
                elif self._supports[node[0]]=='roller':
                    self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
                    i += 1
        for member in self._members:
            self._internal_forces[member] = forces_matrix[i]
            i += 1
        return

    @doctest_depends_on(modules=('numpy',))
    def draw(self, subs_dict=None):
        """
        Returns a plot object of the Truss with all its nodes, members,
        supports and loads.

        .. note::
            The user must be careful while entering load values in their
            directions. The draw function assumes a sign convention that
            is used for plotting loads.

            Given a right-handed coordinate system with XYZ coordinates,
            the supports are assumed to be such that the reaction forces of a
            pinned support is in the +X and +Y direction while those of a
            roller support is in the +Y direction. For the load, the range
            of angles, one can input goes all the way to 360 degrees which, in the
            the plot is the angle that the load vector makes with the positive x-axis in the anticlockwise direction.

            For example, for a 90-degree angle, the load will be a vertically
            directed along +Y while a 270-degree angle denotes a vertical
            load as well but along -Y.

        Examples
        ========

        .. plot::
            :context: close-figs
            :format: doctest
            :include-source: True

            >>> from sympy.physics.continuum_mechanics.truss import Truss
            >>> import math
            >>> t = Truss()
            >>> t.add_node(("A", -4, 0), ("B", 0, 0), ("C", 4, 0), ("D", 8, 0))
            >>> t.add_node(("E", 6, 2/math.sqrt(3)))
            >>> t.add_node(("F", 2, 2*math.sqrt(3)))
            >>> t.add_node(("G", -2, 2/math.sqrt(3)))
            >>> t.add_member(("AB","A","B"), ("BC","B","C"), ("CD","C","D"))
            >>> t.add_member(("AG","A","G"), ("GB","G","B"), ("GF","G","F"))
            >>> t.add_member(("BF","B","F"), ("FC","F","C"), ("CE","C","E"))
            >>> t.add_member(("FE","F","E"), ("DE","D","E"))
            >>> t.apply_support(("A","pinned"), ("D","roller"))
            >>> t.apply_load(("G", 3, 90), ("E", 3, 90), ("F", 2, 90))
            >>> p = t.draw()
            >>> p  # doctest: +ELLIPSIS
            Plot object containing:
            [0]: cartesian line: 1 for x over (1.0, 1.0)
            ...
            >>> p.show()
        """
        if not numpy:
            raise ImportError("To use this function numpy module is required")

        x = Symbol('x')

        markers = []
        annotations = []
        rectangles = []

        node_markers = self._draw_nodes(subs_dict)
        markers += node_markers

        member_rectangles = self._draw_members()
        rectangles += member_rectangles

        support_markers = self._draw_supports()
        markers += support_markers

        load_annotations = self._draw_loads()
        annotations += load_annotations

        xmax = -INF
        xmin = INF
        ymax = -INF
        ymin = INF

        for node in self._node_coordinates:
            xmax = max(xmax, self._node_coordinates[node][0])
            xmin = min(xmin, self._node_coordinates[node][0])
            ymax = max(ymax, self._node_coordinates[node][1])
            ymin = min(ymin, self._node_coordinates[node][1])

        lim = max(xmax*1.1-xmin*0.8+1, ymax*1.1-ymin*0.8+1)

        if lim==xmax*1.1-xmin*0.8+1:
            sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(xmin-0.05*lim, xmax*1.1), ylim=(xmin-0.05*lim, xmax*1.1), axis=False, rectangles=rectangles)

        else:
            sing_plot = plot(1, (x, 1, 1), markers=markers, show=False, annotations=annotations, xlim=(ymin-0.05*lim, ymax*1.1), ylim=(ymin-0.05*lim, ymax*1.1), axis=False, rectangles=rectangles)

        return sing_plot


    def _draw_nodes(self, subs_dict):
        node_markers = []

        for node in self._node_coordinates:
            if (type(self._node_coordinates[node][0]) in (Symbol, Quantity)):
                if self._node_coordinates[node][0] in subs_dict:
                    self._node_coordinates[node][0] = subs_dict[self._node_coordinates[node][0]]
                else:
                    raise ValueError("provided substituted dictionary is not adequate")
            elif (type(self._node_coordinates[node][0]) == Mul):
                objects = self._node_coordinates[node][0].as_coeff_Mul()
                for object in objects:
                    if type(object) in (Symbol, Quantity):
                        if subs_dict==None or object not in subs_dict:
                            raise ValueError("provided substituted dictionary is not adequate")
                        else:
                            self._node_coordinates[node][0] /= object
                            self._node_coordinates[node][0] *= subs_dict[object]

            if (type(self._node_coordinates[node][1]) in (Symbol, Quantity)):
                if self._node_coordinates[node][1] in subs_dict:
                    self._node_coordinates[node][1] = subs_dict[self._node_coordinates[node][1]]
                else:
                    raise ValueError("provided substituted dictionary is not adequate")
            elif (type(self._node_coordinates[node][1]) == Mul):
                objects = self._node_coordinates[node][1].as_coeff_Mul()
                for object in objects:
                    if type(object) in (Symbol, Quantity):
                        if subs_dict==None or object not in subs_dict:
                            raise ValueError("provided substituted dictionary is not adequate")
                        else:
                            self._node_coordinates[node][1] /= object
                            self._node_coordinates[node][1] *= subs_dict[object]

        for node in self._node_coordinates:
            node_markers.append(
                {
                    'args':[[self._node_coordinates[node][0]], [self._node_coordinates[node][1]]],
                    'marker':'o',
                    'markersize':5,
                    'color':'black'
                }
            )
        return node_markers

    def _draw_members(self):

        member_rectangles = []

        xmax = -INF
        xmin = INF
        ymax = -INF
        ymin = INF

        for node in self._node_coordinates:
            xmax = max(xmax, self._node_coordinates[node][0])
            xmin = min(xmin, self._node_coordinates[node][0])
            ymax = max(ymax, self._node_coordinates[node][1])
            ymin = min(ymin, self._node_coordinates[node][1])

        if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
            max_diff = 1.1*xmax-0.8*xmin
        else:
            max_diff = 1.1*ymax-0.8*ymin

        for member in self._members:
            x1 = self._node_coordinates[self._members[member][0]][0]
            y1 = self._node_coordinates[self._members[member][0]][1]
            x2 = self._node_coordinates[self._members[member][1]][0]
            y2 = self._node_coordinates[self._members[member][1]][1]
            if x2!=x1 and y2!=y1:
                if x2>x1:
                    member_rectangles.append(
                        {
                            'xy':(x1-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y1-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2),
                            'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2),
                            'height':0.005*max_diff,
                            'angle':180*atan((y2-y1)/(x2-x1))/pi,
                            'color':'brown'
                        }
                    )
                else:
                    member_rectangles.append(
                        {
                            'xy':(x2-0.005*max_diff*cos(pi/4+atan((y2-y1)/(x2-x1)))/2, y2-0.005*max_diff*sin(pi/4+atan((y2-y1)/(x2-x1)))/2),
                            'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/math.sqrt(2),
                            'height':0.005*max_diff,
                            'angle':180*atan((y2-y1)/(x2-x1))/pi,
                            'color':'brown'
                        }
                    )
            elif y2==y1:
                if x2>x1:
                    member_rectangles.append(
                        {
                            'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
                            'width':sqrt((x1-x2)**2+(y1-y2)**2),
                            'height':0.005*max_diff,
                            'angle':90*(1-math.copysign(1, x2-x1)),
                            'color':'brown'
                        }
                    )
                else:
                    member_rectangles.append(
                        {
                            'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
                            'width':sqrt((x1-x2)**2+(y1-y2)**2),
                            'height':-0.005*max_diff,
                            'angle':90*(1-math.copysign(1, x2-x1)),
                            'color':'brown'
                        }
                    )
            else:
                if y1<y2:
                    member_rectangles.append(
                        {
                            'xy':(x1-0.005*max_diff/2, y1-0.005*max_diff/2),
                            'width':sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2,
                            'height':0.005*max_diff,
                            'angle':90*math.copysign(1, y2-y1),
                            'color':'brown'
                        }
                    )
                else:
                    member_rectangles.append(
                        {
                            'xy':(x2-0.005*max_diff/2, y2-0.005*max_diff/2),
                            'width':-(sqrt((x1-x2)**2+(y1-y2)**2)+0.005*max_diff/2),
                            'height':0.005*max_diff,
                            'angle':90*math.copysign(1, y2-y1),
                            'color':'brown'
                        }
                    )

        return member_rectangles

    def _draw_supports(self):
        support_markers = []

        xmax = -INF
        xmin = INF
        ymax = -INF
        ymin = INF

        for node in self._node_coordinates:
            xmax = max(xmax, self._node_coordinates[node][0])
            xmin = min(xmin, self._node_coordinates[node][0])
            ymax = max(ymax, self._node_coordinates[node][1])
            ymin = min(ymin, self._node_coordinates[node][1])
        if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
            max_diff = 1.1*xmax-0.8*xmin
        else:
            max_diff = 1.1*ymax-0.8*ymin

        for node in self._supports:
            if self._supports[node]=='pinned':
                support_markers.append(
                    {
                        'args':[
                            [self._node_coordinates[node][0]],
                            [self._node_coordinates[node][1]]
                        ],
                        'marker':6,
                        'markersize':15,
                        'color':'black',
                        'markerfacecolor':'none'
                    }
                )
                support_markers.append(
                    {
                        'args':[
                            [self._node_coordinates[node][0]],
                            [self._node_coordinates[node][1]-0.035*max_diff]
                        ],
                        'marker':'_',
                        'markersize':14,
                        'color':'black'
                    }
                )

            elif self._supports[node]=='roller':
                support_markers.append(
                    {
                        'args':[
                            [self._node_coordinates[node][0]],
                            [self._node_coordinates[node][1]-0.02*max_diff]
                        ],
                        'marker':'o',
                        'markersize':11,
                        'color':'black',
                        'markerfacecolor':'none'
                    }
                )
                support_markers.append(
                    {
                        'args':[
                            [self._node_coordinates[node][0]],
                            [self._node_coordinates[node][1]-0.0375*max_diff]
                        ],
                        'marker':'_',
                        'markersize':14,
                        'color':'black'
                    }
                )
        return support_markers

    def _draw_loads(self):
        load_annotations = []

        xmax = -INF
        xmin = INF
        ymax = -INF
        ymin = INF

        for node in self._node_coordinates:
            xmax = max(xmax, self._node_coordinates[node][0])
            xmin = min(xmin, self._node_coordinates[node][0])
            ymax = max(ymax, self._node_coordinates[node][1])
            ymin = min(ymin, self._node_coordinates[node][1])

        if abs(1.1*xmax-0.8*xmin)>abs(1.1*ymax-0.8*ymin):
            max_diff = 1.1*xmax-0.8*xmin+5
        else:
            max_diff = 1.1*ymax-0.8*ymin+5

        for node in self._loads:
            for load in self._loads[node]:
                if load[0] in [Symbol('R_'+str(node)+'_x'), Symbol('R_'+str(node)+'_y')]:
                    continue
                x = self._node_coordinates[node][0]
                y = self._node_coordinates[node][1]
                load_annotations.append(
                    {
                        'text':'',
                        'xy':(
                            x-math.cos(pi*load[1]/180)*(max_diff/100),
                            y-math.sin(pi*load[1]/180)*(max_diff/100)
                        ),
                        'xytext':(
                            x-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.cos(pi*load[1]/180)/20,
                            y-(max_diff/100+abs(xmax-xmin)+abs(ymax-ymin))*math.sin(pi*load[1]/180)/20
                        ),
                        'arrowprops':{'width':1.5, 'headlength':5, 'headwidth':5, 'facecolor':'black'}
                    }
                )
        return load_annotations