Spaces:
Running
Running
""" | |
Some examples have been taken from: | |
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf | |
""" | |
from sympy import KroneckerProduct | |
from sympy.combinatorics import Permutation | |
from sympy.concrete.summations import Sum | |
from sympy.core.numbers import Rational | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (cos, sin, tan) | |
from sympy.functions.special.tensor_functions import KroneckerDelta | |
from sympy.matrices.expressions.determinant import Determinant | |
from sympy.matrices.expressions.diagonal import DiagMatrix | |
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product) | |
from sympy.matrices.expressions.inverse import Inverse | |
from sympy.matrices.expressions.matexpr import MatrixSymbol | |
from sympy.matrices.expressions.special import OneMatrix | |
from sympy.matrices.expressions.trace import Trace | |
from sympy.matrices.expressions.matadd import MatAdd | |
from sympy.matrices.expressions.matmul import MatMul | |
from sympy.matrices.expressions.special import (Identity, ZeroMatrix) | |
from sympy.tensor.array.array_derivatives import ArrayDerivative | |
from sympy.matrices.expressions import hadamard_power | |
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims | |
i, j, k = symbols("i j k") | |
m, n = symbols("m n") | |
X = MatrixSymbol("X", k, k) | |
x = MatrixSymbol("x", k, 1) | |
y = MatrixSymbol("y", k, 1) | |
A = MatrixSymbol("A", k, k) | |
B = MatrixSymbol("B", k, k) | |
C = MatrixSymbol("C", k, k) | |
D = MatrixSymbol("D", k, k) | |
a = MatrixSymbol("a", k, 1) | |
b = MatrixSymbol("b", k, 1) | |
c = MatrixSymbol("c", k, 1) | |
d = MatrixSymbol("d", k, 1) | |
KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1)) | |
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2): | |
# TODO: this is commented because it slows down the tests. | |
return | |
expr = expr.xreplace({k: dim}) | |
x = x.xreplace({k: dim}) | |
diffexpr = diffexpr.xreplace({k: dim}) | |
expr = expr.as_explicit() | |
x = x.as_explicit() | |
diffexpr = diffexpr.as_explicit() | |
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr | |
def test_matrix_derivative_by_scalar(): | |
assert A.diff(i) == ZeroMatrix(k, k) | |
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1) | |
assert x.diff(i) == ZeroMatrix(k, 1) | |
assert (x.T*y).diff(i) == ZeroMatrix(1, 1) | |
assert (x*x.T).diff(i) == ZeroMatrix(k, k) | |
assert (x + y).diff(i) == ZeroMatrix(k, 1) | |
assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1) | |
assert hadamard_power(x, i).diff(i).dummy_eq( | |
HadamardProduct(x.applyfunc(log), HadamardPower(x, i))) | |
assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1) | |
assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y) | |
assert (i*x).diff(i) == x | |
assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x | |
assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1) | |
assert Trace(i**2*X).diff(i) == 2*i*Trace(X) | |
mu = symbols("mu") | |
expr = (2*mu*x) | |
assert expr.diff(x) == 2*mu*Identity(k) | |
def test_one_matrix(): | |
assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1) | |
def test_matrix_derivative_non_matrix_result(): | |
# This is a 4-dimensional array: | |
I = Identity(k) | |
AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2)) | |
assert A.diff(A) == AdA | |
assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3)) | |
assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2)) | |
assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA) | |
assert (A + B).diff(A) == AdA | |
def test_matrix_derivative_trivial_cases(): | |
# Cookbook example 33: | |
# TODO: find a way to represent a four-dimensional zero-array: | |
assert X.diff(A) == ArrayDerivative(X, A) | |
def test_matrix_derivative_with_inverse(): | |
# Cookbook example 61: | |
expr = a.T*Inverse(X)*b | |
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T | |
# Cookbook example 62: | |
expr = Determinant(Inverse(X)) | |
# Not implemented yet: | |
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T | |
# Cookbook example 63: | |
expr = Trace(A*Inverse(X)*B) | |
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T | |
# Cookbook example 64: | |
expr = Trace(Inverse(X + A)) | |
assert expr.diff(X) == -(Inverse(X + A)).T**2 | |
def test_matrix_derivative_vectors_and_scalars(): | |
assert x.diff(x) == Identity(k) | |
assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i) | |
assert x.T.diff(x) == Identity(k) | |
# Cookbook example 69: | |
expr = x.T*a | |
assert expr.diff(x) == a | |
assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0] | |
expr = a.T*x | |
assert expr.diff(x) == a | |
# Cookbook example 70: | |
expr = a.T*X*b | |
assert expr.diff(X) == a*b.T | |
# Cookbook example 71: | |
expr = a.T*X.T*b | |
assert expr.diff(X) == b*a.T | |
# Cookbook example 72: | |
expr = a.T*X*a | |
assert expr.diff(X) == a*a.T | |
expr = a.T*X.T*a | |
assert expr.diff(X) == a*a.T | |
# Cookbook example 77: | |
expr = b.T*X.T*X*c | |
assert expr.diff(X) == X*b*c.T + X*c*b.T | |
# Cookbook example 78: | |
expr = (B*x + b).T*C*(D*x + d) | |
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b) | |
# Cookbook example 81: | |
expr = x.T*B*x | |
assert expr.diff(x) == B*x + B.T*x | |
# Cookbook example 82: | |
expr = b.T*X.T*D*X*c | |
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T | |
# Cookbook example 83: | |
expr = (X*b + c).T*D*(X*b + c) | |
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T | |
assert str(expr[0, 0].diff(X[m, n]).doit()) == \ | |
'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))' | |
# See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957 | |
expr = x*x.T*x | |
I = Identity(k) | |
assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T | |
def test_matrix_derivatives_of_traces(): | |
expr = Trace(A)*A | |
I = Identity(k) | |
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2))) | |
assert expr[i, j].diff(A[m, n]).doit() == ( | |
KDelta(i, m)*KDelta(j, n)*Trace(A) + | |
KDelta(m, n)*A[i, j] | |
) | |
## First order: | |
# Cookbook example 99: | |
expr = Trace(X) | |
assert expr.diff(X) == Identity(k) | |
assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n) | |
# Cookbook example 100: | |
expr = Trace(X*A) | |
assert expr.diff(X) == A.T | |
assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m] | |
# Cookbook example 101: | |
expr = Trace(A*X*B) | |
assert expr.diff(X) == A.T*B.T | |
assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n]) | |
# Cookbook example 102: | |
expr = Trace(A*X.T*B) | |
assert expr.diff(X) == B*A | |
# Cookbook example 103: | |
expr = Trace(X.T*A) | |
assert expr.diff(X) == A | |
# Cookbook example 104: | |
expr = Trace(A*X.T) | |
assert expr.diff(X) == A | |
# Cookbook example 105: | |
# TODO: TensorProduct is not supported | |
#expr = Trace(TensorProduct(A, X)) | |
#assert expr.diff(X) == Trace(A)*Identity(k) | |
## Second order: | |
# Cookbook example 106: | |
expr = Trace(X**2) | |
assert expr.diff(X) == 2*X.T | |
# Cookbook example 107: | |
expr = Trace(X**2*B) | |
assert expr.diff(X) == (X*B + B*X).T | |
expr = Trace(MatMul(X, X, B)) | |
assert expr.diff(X) == (X*B + B*X).T | |
# Cookbook example 108: | |
expr = Trace(X.T*B*X) | |
assert expr.diff(X) == B*X + B.T*X | |
# Cookbook example 109: | |
expr = Trace(B*X*X.T) | |
assert expr.diff(X) == B*X + B.T*X | |
# Cookbook example 110: | |
expr = Trace(X*X.T*B) | |
assert expr.diff(X) == B*X + B.T*X | |
# Cookbook example 111: | |
expr = Trace(X*B*X.T) | |
assert expr.diff(X) == X*B.T + X*B | |
# Cookbook example 112: | |
expr = Trace(B*X.T*X) | |
assert expr.diff(X) == X*B.T + X*B | |
# Cookbook example 113: | |
expr = Trace(X.T*X*B) | |
assert expr.diff(X) == X*B.T + X*B | |
# Cookbook example 114: | |
expr = Trace(A*X*B*X) | |
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T | |
# Cookbook example 115: | |
expr = Trace(X.T*X) | |
assert expr.diff(X) == 2*X | |
expr = Trace(X*X.T) | |
assert expr.diff(X) == 2*X | |
# Cookbook example 116: | |
expr = Trace(B.T*X.T*C*X*B) | |
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T | |
# Cookbook example 117: | |
expr = Trace(X.T*B*X*C) | |
assert expr.diff(X) == B*X*C + B.T*X*C.T | |
# Cookbook example 118: | |
expr = Trace(A*X*B*X.T*C) | |
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B | |
# Cookbook example 119: | |
expr = Trace((A*X*B + C)*(A*X*B + C).T) | |
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T | |
# Cookbook example 120: | |
# TODO: no support for TensorProduct. | |
# expr = Trace(TensorProduct(X, X)) | |
# expr = Trace(X)*Trace(X) | |
# expr.diff(X) == 2*Trace(X)*Identity(k) | |
# Higher Order | |
# Cookbook example 121: | |
expr = Trace(X**k) | |
#assert expr.diff(X) == k*(X**(k-1)).T | |
# Cookbook example 122: | |
expr = Trace(A*X**k) | |
#assert expr.diff(X) == # Needs indices | |
# Cookbook example 123: | |
expr = Trace(B.T*X.T*C*X*X.T*C*X*B) | |
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T | |
# Other | |
# Cookbook example 124: | |
expr = Trace(A*X**(-1)*B) | |
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T | |
# Cookbook example 125: | |
expr = Trace(Inverse(X.T*C*X)*A) | |
# Warning: result in the cookbook is equivalent if B and C are symmetric: | |
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T | |
# Cookbook example 126: | |
expr = Trace((X.T*C*X).inv()*(X.T*B*X)) | |
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv() | |
# Cookbook example 127: | |
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X)) | |
# Warning: result in the cookbook is equivalent if B and C are symmetric: | |
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X) | |
def test_derivatives_of_complicated_matrix_expr(): | |
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b | |
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T | |
assert expr.diff(X) == result | |
def test_mixed_deriv_mixed_expressions(): | |
expr = 3*Trace(A) | |
assert expr.diff(A) == 3*Identity(k) | |
expr = k | |
deriv = expr.diff(A) | |
assert isinstance(deriv, ZeroMatrix) | |
assert deriv == ZeroMatrix(k, k) | |
expr = Trace(A)**2 | |
assert expr.diff(A) == (2*Trace(A))*Identity(k) | |
expr = Trace(A)*A | |
I = Identity(k) | |
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2))) | |
expr = Trace(Trace(A)*A) | |
assert expr.diff(A) == (2*Trace(A))*Identity(k) | |
expr = Trace(Trace(Trace(A)*A)*A) | |
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k) | |
def test_derivatives_matrix_norms(): | |
expr = x.T*y | |
assert expr.diff(x) == y | |
assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0] | |
expr = (x.T*y)**S.Half | |
assert expr.diff(x) == y/(2*sqrt(x.T*y)) | |
expr = (x.T*x)**S.Half | |
assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2) | |
expr = (c.T*a*x.T*b)**S.Half | |
assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2 | |
expr = (c.T*a*x.T*b)**Rational(1, 3) | |
assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3 | |
expr = (a.T*X*b)**S.Half | |
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T | |
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c | |
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T | |
def test_derivatives_elementwise_applyfunc(): | |
expr = x.applyfunc(tan) | |
assert expr.diff(x).dummy_eq( | |
DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1))) | |
assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m) | |
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) | |
expr = (i**2*x).applyfunc(sin) | |
assert expr.diff(i).dummy_eq( | |
HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos))) | |
assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0]) | |
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i)) | |
expr = (log(i)*A*B).applyfunc(sin) | |
assert expr.diff(i).dummy_eq( | |
HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos))) | |
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i)) | |
expr = A*x.applyfunc(exp) | |
# TODO: restore this result (currently returning the transpose): | |
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T) | |
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) | |
expr = x.T*A*x + k*y.applyfunc(sin).T*x | |
assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin)) | |
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) | |
expr = x.applyfunc(sin).T*y | |
# TODO: restore (currently returning the transpose): | |
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y) | |
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) | |
expr = (a.T * X * b).applyfunc(sin) | |
assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T) | |
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) | |
expr = a.T * X.applyfunc(sin) * b | |
assert expr.diff(X).dummy_eq( | |
DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b)) | |
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) | |
expr = a.T * (A*X*B).applyfunc(sin) * b | |
assert expr.diff(X).dummy_eq( | |
A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T) | |
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) | |
expr = a.T * (A*X*b).applyfunc(sin) * b.T | |
# TODO: not implemented | |
#assert expr.diff(X) == ... | |
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) | |
expr = a.T*A*X.applyfunc(sin)*B*b | |
assert expr.diff(X).dummy_eq( | |
HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos))) | |
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b | |
# TODO: wrong | |
# assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T | |
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b | |
# TODO: wrong | |
# assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b) | |
def test_derivatives_of_hadamard_expressions(): | |
# Hadamard Product | |
expr = hadamard_product(a, x, b) | |
assert expr.diff(x) == DiagMatrix(hadamard_product(b, a)) | |
expr = a.T*hadamard_product(A, X, B)*b | |
assert expr.diff(X) == HadamardProduct(a*b.T, A, B) | |
# Hadamard Power | |
expr = hadamard_power(x, 2) | |
assert expr.diff(x).doit() == 2*DiagMatrix(x) | |
expr = hadamard_power(x.T, 2) | |
assert expr.diff(x).doit() == 2*DiagMatrix(x) | |
expr = hadamard_power(x, S.Half) | |
assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2))) | |
expr = hadamard_power(a.T*X*b, 2) | |
assert expr.diff(X) == 2*a*a.T*X*b*b.T | |
expr = hadamard_power(a.T*X*b, S.Half) | |
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T | |