File size: 15,991 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""
Some examples have been taken from:

http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
"""
from sympy import KroneckerProduct
from sympy.combinatorics import Permutation
from sympy.concrete.summations import Sum
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import OneMatrix
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
from sympy.tensor.array.array_derivatives import ArrayDerivative
from sympy.matrices.expressions import hadamard_power
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims

i, j, k = symbols("i j k")
m, n = symbols("m n")

X = MatrixSymbol("X", k, k)
x = MatrixSymbol("x", k, 1)
y = MatrixSymbol("y", k, 1)

A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)

a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)


KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))


def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
    # TODO: this is commented because it slows down the tests.
    return

    expr = expr.xreplace({k: dim})
    x = x.xreplace({k: dim})
    diffexpr = diffexpr.xreplace({k: dim})

    expr = expr.as_explicit()
    x = x.as_explicit()
    diffexpr = diffexpr.as_explicit()

    assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr


def test_matrix_derivative_by_scalar():
    assert A.diff(i) == ZeroMatrix(k, k)
    assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
    assert x.diff(i) == ZeroMatrix(k, 1)
    assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
    assert (x*x.T).diff(i) == ZeroMatrix(k, k)
    assert (x + y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_power(x, i).diff(i).dummy_eq(
        HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
    assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
    assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
    assert (i*x).diff(i) == x
    assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
    assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
    assert Trace(i**2*X).diff(i) == 2*i*Trace(X)

    mu = symbols("mu")
    expr = (2*mu*x)
    assert expr.diff(x) == 2*mu*Identity(k)


def test_one_matrix():
    assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)


def test_matrix_derivative_non_matrix_result():
    # This is a 4-dimensional array:
    I = Identity(k)
    AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
    assert A.diff(A) == AdA
    assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
    assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
    assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
    assert (A + B).diff(A) == AdA


def test_matrix_derivative_trivial_cases():
    # Cookbook example 33:
    # TODO: find a way to represent a four-dimensional zero-array:
    assert X.diff(A) == ArrayDerivative(X, A)


def test_matrix_derivative_with_inverse():

    # Cookbook example 61:
    expr = a.T*Inverse(X)*b
    assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T

    # Cookbook example 62:
    expr = Determinant(Inverse(X))
    # Not implemented yet:
    # assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T

    # Cookbook example 63:
    expr = Trace(A*Inverse(X)*B)
    assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T

    # Cookbook example 64:
    expr = Trace(Inverse(X + A))
    assert expr.diff(X) == -(Inverse(X + A)).T**2


def test_matrix_derivative_vectors_and_scalars():

    assert x.diff(x) == Identity(k)
    assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)

    assert x.T.diff(x) == Identity(k)

    # Cookbook example 69:
    expr = x.T*a
    assert expr.diff(x) == a
    assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
    expr = a.T*x
    assert expr.diff(x) == a

    # Cookbook example 70:
    expr = a.T*X*b
    assert expr.diff(X) == a*b.T

    # Cookbook example 71:
    expr = a.T*X.T*b
    assert expr.diff(X) == b*a.T

    # Cookbook example 72:
    expr = a.T*X*a
    assert expr.diff(X) == a*a.T
    expr = a.T*X.T*a
    assert expr.diff(X) == a*a.T

    # Cookbook example 77:
    expr = b.T*X.T*X*c
    assert expr.diff(X) == X*b*c.T + X*c*b.T

    # Cookbook example 78:
    expr = (B*x + b).T*C*(D*x + d)
    assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)

    # Cookbook example 81:
    expr = x.T*B*x
    assert expr.diff(x) == B*x + B.T*x

    # Cookbook example 82:
    expr = b.T*X.T*D*X*c
    assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T

    # Cookbook example 83:
    expr = (X*b + c).T*D*(X*b + c)
    assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
    assert str(expr[0, 0].diff(X[m, n]).doit()) == \
        'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'

    # See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
    expr = x*x.T*x
    I = Identity(k)
    assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T


def test_matrix_derivatives_of_traces():

    expr = Trace(A)*A
    I = Identity(k)
    assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
    assert expr[i, j].diff(A[m, n]).doit() == (
        KDelta(i, m)*KDelta(j, n)*Trace(A) +
        KDelta(m, n)*A[i, j]
    )

    ## First order:

    # Cookbook example 99:
    expr = Trace(X)
    assert expr.diff(X) == Identity(k)
    assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)

    # Cookbook example 100:
    expr = Trace(X*A)
    assert expr.diff(X) == A.T
    assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]

    # Cookbook example 101:
    expr = Trace(A*X*B)
    assert expr.diff(X) == A.T*B.T
    assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])

    # Cookbook example 102:
    expr = Trace(A*X.T*B)
    assert expr.diff(X) == B*A

    # Cookbook example 103:
    expr = Trace(X.T*A)
    assert expr.diff(X) == A

    # Cookbook example 104:
    expr = Trace(A*X.T)
    assert expr.diff(X) == A

    # Cookbook example 105:
    # TODO: TensorProduct is not supported
    #expr = Trace(TensorProduct(A, X))
    #assert expr.diff(X) == Trace(A)*Identity(k)

    ## Second order:

    # Cookbook example 106:
    expr = Trace(X**2)
    assert expr.diff(X) == 2*X.T

    # Cookbook example 107:
    expr = Trace(X**2*B)
    assert expr.diff(X) == (X*B + B*X).T
    expr = Trace(MatMul(X, X, B))
    assert expr.diff(X) == (X*B + B*X).T

    # Cookbook example 108:
    expr = Trace(X.T*B*X)
    assert expr.diff(X) == B*X + B.T*X

    # Cookbook example 109:
    expr = Trace(B*X*X.T)
    assert expr.diff(X) == B*X + B.T*X

    # Cookbook example 110:
    expr = Trace(X*X.T*B)
    assert expr.diff(X) == B*X + B.T*X

    # Cookbook example 111:
    expr = Trace(X*B*X.T)
    assert expr.diff(X) == X*B.T + X*B

    # Cookbook example 112:
    expr = Trace(B*X.T*X)
    assert expr.diff(X) == X*B.T + X*B

    # Cookbook example 113:
    expr = Trace(X.T*X*B)
    assert expr.diff(X) == X*B.T + X*B

    # Cookbook example 114:
    expr = Trace(A*X*B*X)
    assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T

    # Cookbook example 115:
    expr = Trace(X.T*X)
    assert expr.diff(X) == 2*X
    expr = Trace(X*X.T)
    assert expr.diff(X) == 2*X

    # Cookbook example 116:
    expr = Trace(B.T*X.T*C*X*B)
    assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T

    # Cookbook example 117:
    expr = Trace(X.T*B*X*C)
    assert expr.diff(X) == B*X*C + B.T*X*C.T

    # Cookbook example 118:
    expr = Trace(A*X*B*X.T*C)
    assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B

    # Cookbook example 119:
    expr = Trace((A*X*B + C)*(A*X*B + C).T)
    assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T

    # Cookbook example 120:
    # TODO: no support for TensorProduct.
    # expr = Trace(TensorProduct(X, X))
    # expr = Trace(X)*Trace(X)
    # expr.diff(X) == 2*Trace(X)*Identity(k)

    # Higher Order

    # Cookbook example 121:
    expr = Trace(X**k)
    #assert expr.diff(X) == k*(X**(k-1)).T

    # Cookbook example 122:
    expr = Trace(A*X**k)
    #assert expr.diff(X) == # Needs indices

    # Cookbook example 123:
    expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
    assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T

    # Other

    # Cookbook example 124:
    expr = Trace(A*X**(-1)*B)
    assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T

    # Cookbook example 125:
    expr = Trace(Inverse(X.T*C*X)*A)
    # Warning: result in the cookbook is equivalent if B and C are symmetric:
    assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T

    # Cookbook example 126:
    expr = Trace((X.T*C*X).inv()*(X.T*B*X))
    assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()

    # Cookbook example 127:
    expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
    # Warning: result in the cookbook is equivalent if B and C are symmetric:
    assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)


def test_derivatives_of_complicated_matrix_expr():
    expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
    result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
    assert expr.diff(X) == result


def test_mixed_deriv_mixed_expressions():

    expr = 3*Trace(A)
    assert expr.diff(A) == 3*Identity(k)

    expr = k
    deriv = expr.diff(A)
    assert isinstance(deriv, ZeroMatrix)
    assert deriv == ZeroMatrix(k, k)

    expr = Trace(A)**2
    assert expr.diff(A) == (2*Trace(A))*Identity(k)

    expr = Trace(A)*A
    I = Identity(k)
    assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))

    expr = Trace(Trace(A)*A)
    assert expr.diff(A) == (2*Trace(A))*Identity(k)

    expr = Trace(Trace(Trace(A)*A)*A)
    assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)


def test_derivatives_matrix_norms():

    expr = x.T*y
    assert expr.diff(x) == y
    assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]

    expr = (x.T*y)**S.Half
    assert expr.diff(x) == y/(2*sqrt(x.T*y))

    expr = (x.T*x)**S.Half
    assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)

    expr = (c.T*a*x.T*b)**S.Half
    assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2

    expr = (c.T*a*x.T*b)**Rational(1, 3)
    assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3

    expr = (a.T*X*b)**S.Half
    assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T

    expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
    assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T


def test_derivatives_elementwise_applyfunc():

    expr = x.applyfunc(tan)
    assert expr.diff(x).dummy_eq(
        DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
    assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
    _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))

    expr = (i**2*x).applyfunc(sin)
    assert expr.diff(i).dummy_eq(
        HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
    assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
    _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))

    expr = (log(i)*A*B).applyfunc(sin)
    assert expr.diff(i).dummy_eq(
        HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
    _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))

    expr = A*x.applyfunc(exp)
    # TODO: restore this result (currently returning the transpose):
    #  assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
    _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))

    expr = x.T*A*x + k*y.applyfunc(sin).T*x
    assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
    _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))

    expr = x.applyfunc(sin).T*y
    # TODO: restore (currently returning the transpose):
    #  assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
    _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))

    expr = (a.T * X * b).applyfunc(sin)
    assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
    _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))

    expr = a.T * X.applyfunc(sin) * b
    assert expr.diff(X).dummy_eq(
        DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
    _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))

    expr = a.T * (A*X*B).applyfunc(sin) * b
    assert expr.diff(X).dummy_eq(
        A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
    _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))

    expr = a.T * (A*X*b).applyfunc(sin) * b.T
    # TODO: not implemented
    #assert expr.diff(X) == ...
    #_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))

    expr = a.T*A*X.applyfunc(sin)*B*b
    assert expr.diff(X).dummy_eq(
        HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))

    expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
    # TODO: wrong
    # assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T

    expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
    # TODO: wrong
    # assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)


def test_derivatives_of_hadamard_expressions():

    # Hadamard Product

    expr = hadamard_product(a, x, b)
    assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))

    expr = a.T*hadamard_product(A, X, B)*b
    assert expr.diff(X) == HadamardProduct(a*b.T, A, B)

    # Hadamard Power

    expr = hadamard_power(x, 2)
    assert expr.diff(x).doit() == 2*DiagMatrix(x)

    expr = hadamard_power(x.T, 2)
    assert expr.diff(x).doit() == 2*DiagMatrix(x)

    expr = hadamard_power(x, S.Half)
    assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))

    expr = hadamard_power(a.T*X*b, 2)
    assert expr.diff(X) == 2*a*a.T*X*b*b.T

    expr = hadamard_power(a.T*X*b, S.Half)
    assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T