Spaces:
Running
Running
""" | |
This module implements Holonomic Functions and | |
various operations on them. | |
""" | |
from sympy.core import Add, Mul, Pow | |
from sympy.core.numbers import (NaN, Infinity, NegativeInfinity, Float, I, pi, | |
equal_valued, int_valued) | |
from sympy.core.singleton import S | |
from sympy.core.sorting import ordered | |
from sympy.core.symbol import Dummy, Symbol | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import binomial, factorial, rf | |
from sympy.functions.elementary.exponential import exp_polar, exp, log | |
from sympy.functions.elementary.hyperbolic import (cosh, sinh) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (cos, sin, sinc) | |
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi) | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.functions.special.hyper import hyper, meijerg | |
from sympy.integrals import meijerint | |
from sympy.matrices import Matrix | |
from sympy.polys.rings import PolyElement | |
from sympy.polys.fields import FracElement | |
from sympy.polys.domains import QQ, RR | |
from sympy.polys.polyclasses import DMF | |
from sympy.polys.polyroots import roots | |
from sympy.polys.polytools import Poly | |
from sympy.polys.matrices import DomainMatrix | |
from sympy.printing import sstr | |
from sympy.series.limits import limit | |
from sympy.series.order import Order | |
from sympy.simplify.hyperexpand import hyperexpand | |
from sympy.simplify.simplify import nsimplify | |
from sympy.solvers.solvers import solve | |
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators | |
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, | |
SingularityError, NotHolonomicError) | |
def _find_nonzero_solution(r, homosys): | |
ones = lambda shape: DomainMatrix.ones(shape, r.domain) | |
particular, nullspace = r._solve(homosys) | |
nullity = nullspace.shape[0] | |
nullpart = ones((1, nullity)) * nullspace | |
sol = (particular + nullpart).transpose() | |
return sol | |
def DifferentialOperators(base, generator): | |
r""" | |
This function is used to create annihilators using ``Dx``. | |
Explanation | |
=========== | |
Returns an Algebra of Differential Operators also called Weyl Algebra | |
and the operator for differentiation i.e. the ``Dx`` operator. | |
Parameters | |
========== | |
base: | |
Base polynomial ring for the algebra. | |
The base polynomial ring is the ring of polynomials in :math:`x` that | |
will appear as coefficients in the operators. | |
generator: | |
Generator of the algebra which can | |
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.abc import x | |
>>> from sympy.holonomic.holonomic import DifferentialOperators | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') | |
>>> R | |
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] | |
>>> Dx*x | |
(1) + (x)*Dx | |
""" | |
ring = DifferentialOperatorAlgebra(base, generator) | |
return (ring, ring.derivative_operator) | |
class DifferentialOperatorAlgebra: | |
r""" | |
An Ore Algebra is a set of noncommutative polynomials in the | |
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. | |
It follows the commutation rule: | |
.. math :: | |
Dxa = \sigma(a)Dx + \delta(a) | |
for :math:`a \subset A`. | |
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A` | |
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`. | |
If one takes the sigma as identity map and delta as the standard derivation | |
then it becomes the algebra of Differential Operators also called | |
a Weyl Algebra i.e. an algebra whose elements are Differential Operators. | |
This class represents a Weyl Algebra and serves as the parent ring for | |
Differential Operators. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy import symbols | |
>>> from sympy.holonomic.holonomic import DifferentialOperators | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') | |
>>> R | |
Univariate Differential Operator Algebra in intermediate Dx over the base ring | |
ZZ[x] | |
See Also | |
======== | |
DifferentialOperator | |
""" | |
def __init__(self, base, generator): | |
# the base polynomial ring for the algebra | |
self.base = base | |
# the operator representing differentiation i.e. `Dx` | |
self.derivative_operator = DifferentialOperator( | |
[base.zero, base.one], self) | |
if generator is None: | |
self.gen_symbol = Symbol('Dx', commutative=False) | |
else: | |
if isinstance(generator, str): | |
self.gen_symbol = Symbol(generator, commutative=False) | |
elif isinstance(generator, Symbol): | |
self.gen_symbol = generator | |
def __str__(self): | |
string = 'Univariate Differential Operator Algebra in intermediate '\ | |
+ sstr(self.gen_symbol) + ' over the base ring ' + \ | |
(self.base).__str__() | |
return string | |
__repr__ = __str__ | |
def __eq__(self, other): | |
return self.base == other.base and \ | |
self.gen_symbol == other.gen_symbol | |
class DifferentialOperator: | |
""" | |
Differential Operators are elements of Weyl Algebra. The Operators | |
are defined by a list of polynomials in the base ring and the | |
parent ring of the Operator i.e. the algebra it belongs to. | |
Explanation | |
=========== | |
Takes a list of polynomials for each power of ``Dx`` and the | |
parent ring which must be an instance of DifferentialOperatorAlgebra. | |
A Differential Operator can be created easily using | |
the operator ``Dx``. See examples below. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators | |
>>> from sympy import ZZ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') | |
>>> DifferentialOperator([0, 1, x**2], R) | |
(1)*Dx + (x**2)*Dx**2 | |
>>> (x*Dx*x + 1 - Dx**2)**2 | |
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 | |
See Also | |
======== | |
DifferentialOperatorAlgebra | |
""" | |
_op_priority = 20 | |
def __init__(self, list_of_poly, parent): | |
""" | |
Parameters | |
========== | |
list_of_poly: | |
List of polynomials belonging to the base ring of the algebra. | |
parent: | |
Parent algebra of the operator. | |
""" | |
# the parent ring for this operator | |
# must be an DifferentialOperatorAlgebra object | |
self.parent = parent | |
base = self.parent.base | |
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] | |
# sequence of polynomials in x for each power of Dx | |
# the list should not have trailing zeroes | |
# represents the operator | |
# convert the expressions into ring elements using from_sympy | |
for i, j in enumerate(list_of_poly): | |
if not isinstance(j, base.dtype): | |
list_of_poly[i] = base.from_sympy(sympify(j)) | |
else: | |
list_of_poly[i] = base.from_sympy(base.to_sympy(j)) | |
self.listofpoly = list_of_poly | |
# highest power of `Dx` | |
self.order = len(self.listofpoly) - 1 | |
def __mul__(self, other): | |
""" | |
Multiplies two DifferentialOperator and returns another | |
DifferentialOperator instance using the commutation rule | |
Dx*a = a*Dx + a' | |
""" | |
listofself = self.listofpoly | |
if isinstance(other, DifferentialOperator): | |
listofother = other.listofpoly | |
elif isinstance(other, self.parent.base.dtype): | |
listofother = [other] | |
else: | |
listofother = [self.parent.base.from_sympy(sympify(other))] | |
# multiplies a polynomial `b` with a list of polynomials | |
def _mul_dmp_diffop(b, listofother): | |
if isinstance(listofother, list): | |
return [i * b for i in listofother] | |
return [b * listofother] | |
sol = _mul_dmp_diffop(listofself[0], listofother) | |
# compute Dx^i * b | |
def _mul_Dxi_b(b): | |
sol1 = [self.parent.base.zero] | |
sol2 = [] | |
if isinstance(b, list): | |
for i in b: | |
sol1.append(i) | |
sol2.append(i.diff()) | |
else: | |
sol1.append(self.parent.base.from_sympy(b)) | |
sol2.append(self.parent.base.from_sympy(b).diff()) | |
return _add_lists(sol1, sol2) | |
for i in range(1, len(listofself)): | |
# find Dx^i * b in ith iteration | |
listofother = _mul_Dxi_b(listofother) | |
# solution = solution + listofself[i] * (Dx^i * b) | |
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) | |
return DifferentialOperator(sol, self.parent) | |
def __rmul__(self, other): | |
if not isinstance(other, DifferentialOperator): | |
if not isinstance(other, self.parent.base.dtype): | |
other = (self.parent.base).from_sympy(sympify(other)) | |
sol = [other * j for j in self.listofpoly] | |
return DifferentialOperator(sol, self.parent) | |
def __add__(self, other): | |
if isinstance(other, DifferentialOperator): | |
sol = _add_lists(self.listofpoly, other.listofpoly) | |
return DifferentialOperator(sol, self.parent) | |
list_self = self.listofpoly | |
if not isinstance(other, self.parent.base.dtype): | |
list_other = [((self.parent).base).from_sympy(sympify(other))] | |
else: | |
list_other = [other] | |
sol = [list_self[0] + list_other[0]] + list_self[1:] | |
return DifferentialOperator(sol, self.parent) | |
__radd__ = __add__ | |
def __sub__(self, other): | |
return self + (-1) * other | |
def __rsub__(self, other): | |
return (-1) * self + other | |
def __neg__(self): | |
return -1 * self | |
def __truediv__(self, other): | |
return self * (S.One / other) | |
def __pow__(self, n): | |
if n == 1: | |
return self | |
result = DifferentialOperator([self.parent.base.one], self.parent) | |
if n == 0: | |
return result | |
# if self is `Dx` | |
if self.listofpoly == self.parent.derivative_operator.listofpoly: | |
sol = [self.parent.base.zero]*n + [self.parent.base.one] | |
return DifferentialOperator(sol, self.parent) | |
x = self | |
while True: | |
if n % 2: | |
result *= x | |
n >>= 1 | |
if not n: | |
break | |
x *= x | |
return result | |
def __str__(self): | |
listofpoly = self.listofpoly | |
print_str = '' | |
for i, j in enumerate(listofpoly): | |
if j == self.parent.base.zero: | |
continue | |
j = self.parent.base.to_sympy(j) | |
if i == 0: | |
print_str += '(' + sstr(j) + ')' | |
continue | |
if print_str: | |
print_str += ' + ' | |
if i == 1: | |
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) | |
continue | |
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) | |
return print_str | |
__repr__ = __str__ | |
def __eq__(self, other): | |
if isinstance(other, DifferentialOperator): | |
return self.listofpoly == other.listofpoly and \ | |
self.parent == other.parent | |
return self.listofpoly[0] == other and \ | |
all(i is self.parent.base.zero for i in self.listofpoly[1:]) | |
def is_singular(self, x0): | |
""" | |
Checks if the differential equation is singular at x0. | |
""" | |
base = self.parent.base | |
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) | |
class HolonomicFunction: | |
r""" | |
A Holonomic Function is a solution to a linear homogeneous ordinary | |
differential equation with polynomial coefficients. This differential | |
equation can also be represented by an annihilator i.e. a Differential | |
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, | |
initial conditions can also be provided along with the annihilator. | |
Explanation | |
=========== | |
Holonomic functions have closure properties and thus forms a ring. | |
Given two Holonomic Functions f and g, their sum, product, | |
integral and derivative is also a Holonomic Function. | |
For ordinary points initial condition should be a vector of values of | |
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. | |
For regular singular points initial conditions can also be provided in this | |
format: | |
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` | |
where s0, s1, ... are the roots of indicial equation and vectors | |
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial | |
terms of the associated power series. See Examples below. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols, S | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x | |
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) | |
>>> p + q # annihilator of e^x + sin(x) | |
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) | |
>>> p * q # annihilator of e^x * sin(x) | |
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) | |
An example of initial conditions for regular singular points, | |
the indicial equation has only one root `1/2`. | |
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) | |
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) | |
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() | |
sqrt(x) | |
To plot a Holonomic Function, one can use `.evalf()` for numerical | |
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. | |
>>> import sympy.holonomic # doctest: +SKIP | |
>>> from sympy import var, sin # doctest: +SKIP | |
>>> import matplotlib.pyplot as plt # doctest: +SKIP | |
>>> import numpy as np # doctest: +SKIP | |
>>> var("x") # doctest: +SKIP | |
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP | |
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP | |
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP | |
>>> plt.show() # doctest: +SKIP | |
""" | |
_op_priority = 20 | |
def __init__(self, annihilator, x, x0=0, y0=None): | |
""" | |
Parameters | |
========== | |
annihilator: | |
Annihilator of the Holonomic Function, represented by a | |
`DifferentialOperator` object. | |
x: | |
Variable of the function. | |
x0: | |
The point at which initial conditions are stored. | |
Generally an integer. | |
y0: | |
The initial condition. The proper format for the initial condition | |
is described in class docstring. To make the function unique, | |
length of the vector `y0` should be equal to or greater than the | |
order of differential equation. | |
""" | |
# initial condition | |
self.y0 = y0 | |
# the point for initial conditions, default is zero. | |
self.x0 = x0 | |
# differential operator L such that L.f = 0 | |
self.annihilator = annihilator | |
self.x = x | |
def __str__(self): | |
if self._have_init_cond(): | |
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ | |
sstr(self.x), sstr(self.x0), sstr(self.y0)) | |
else: | |
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ | |
sstr(self.x)) | |
return str_sol | |
__repr__ = __str__ | |
def unify(self, other): | |
""" | |
Unifies the base polynomial ring of a given two Holonomic | |
Functions. | |
""" | |
R1 = self.annihilator.parent.base | |
R2 = other.annihilator.parent.base | |
dom1 = R1.dom | |
dom2 = R2.dom | |
if R1 == R2: | |
return (self, other) | |
R = (dom1.unify(dom2)).old_poly_ring(self.x) | |
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) | |
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] | |
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] | |
sol1 = DifferentialOperator(sol1, newparent) | |
sol2 = DifferentialOperator(sol2, newparent) | |
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) | |
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) | |
return (sol1, sol2) | |
def is_singularics(self): | |
""" | |
Returns True if the function have singular initial condition | |
in the dictionary format. | |
Returns False if the function have ordinary initial condition | |
in the list format. | |
Returns None for all other cases. | |
""" | |
if isinstance(self.y0, dict): | |
return True | |
elif isinstance(self.y0, list): | |
return False | |
def _have_init_cond(self): | |
""" | |
Checks if the function have initial condition. | |
""" | |
return bool(self.y0) | |
def _singularics_to_ord(self): | |
""" | |
Converts a singular initial condition to ordinary if possible. | |
""" | |
a = list(self.y0)[0] | |
b = self.y0[a] | |
if len(self.y0) == 1 and a == int(a) and a > 0: | |
a = int(a) | |
y0 = [S.Zero] * a | |
y0 += [j * factorial(a + i) for i, j in enumerate(b)] | |
return HolonomicFunction(self.annihilator, self.x, self.x0, y0) | |
def __add__(self, other): | |
# if the ground domains are different | |
if self.annihilator.parent.base != other.annihilator.parent.base: | |
a, b = self.unify(other) | |
return a + b | |
deg1 = self.annihilator.order | |
deg2 = other.annihilator.order | |
dim = max(deg1, deg2) | |
R = self.annihilator.parent.base | |
K = R.get_field() | |
rowsself = [self.annihilator] | |
rowsother = [other.annihilator] | |
gen = self.annihilator.parent.derivative_operator | |
# constructing annihilators up to order dim | |
for i in range(dim - deg1): | |
diff1 = (gen * rowsself[-1]) | |
rowsself.append(diff1) | |
for i in range(dim - deg2): | |
diff2 = (gen * rowsother[-1]) | |
rowsother.append(diff2) | |
row = rowsself + rowsother | |
# constructing the matrix of the ansatz | |
r = [] | |
for expr in row: | |
p = [] | |
for i in range(dim + 1): | |
if i >= len(expr.listofpoly): | |
p.append(K.zero) | |
else: | |
p.append(K.new(expr.listofpoly[i].to_list())) | |
r.append(p) | |
# solving the linear system using gauss jordan solver | |
r = DomainMatrix(r, (len(row), dim+1), K).transpose() | |
homosys = DomainMatrix.zeros((dim+1, 1), K) | |
sol = _find_nonzero_solution(r, homosys) | |
# if a solution is not obtained then increasing the order by 1 in each | |
# iteration | |
while sol.is_zero_matrix: | |
dim += 1 | |
diff1 = (gen * rowsself[-1]) | |
rowsself.append(diff1) | |
diff2 = (gen * rowsother[-1]) | |
rowsother.append(diff2) | |
row = rowsself + rowsother | |
r = [] | |
for expr in row: | |
p = [] | |
for i in range(dim + 1): | |
if i >= len(expr.listofpoly): | |
p.append(K.zero) | |
else: | |
p.append(K.new(expr.listofpoly[i].to_list())) | |
r.append(p) | |
# solving the linear system using gauss jordan solver | |
r = DomainMatrix(r, (len(row), dim+1), K).transpose() | |
homosys = DomainMatrix.zeros((dim+1, 1), K) | |
sol = _find_nonzero_solution(r, homosys) | |
# taking only the coefficients needed to multiply with `self` | |
# can be also be done the other way by taking R.H.S and multiplying with | |
# `other` | |
sol = sol.flat()[:dim + 1 - deg1] | |
sol1 = _normalize(sol, self.annihilator.parent) | |
# annihilator of the solution | |
sol = sol1 * (self.annihilator) | |
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) | |
if not (self._have_init_cond() and other._have_init_cond()): | |
return HolonomicFunction(sol, self.x) | |
# both the functions have ordinary initial conditions | |
if self.is_singularics() == False and other.is_singularics() == False: | |
# directly add the corresponding value | |
if self.x0 == other.x0: | |
# try to extended the initial conditions | |
# using the annihilator | |
y1 = _extend_y0(self, sol.order) | |
y2 = _extend_y0(other, sol.order) | |
y0 = [a + b for a, b in zip(y1, y2)] | |
return HolonomicFunction(sol, self.x, self.x0, y0) | |
# change the initial conditions to a same point | |
selfat0 = self.annihilator.is_singular(0) | |
otherat0 = other.annihilator.is_singular(0) | |
if self.x0 == 0 and not selfat0 and not otherat0: | |
return self + other.change_ics(0) | |
if other.x0 == 0 and not selfat0 and not otherat0: | |
return self.change_ics(0) + other | |
selfatx0 = self.annihilator.is_singular(self.x0) | |
otheratx0 = other.annihilator.is_singular(self.x0) | |
if not selfatx0 and not otheratx0: | |
return self + other.change_ics(self.x0) | |
return self.change_ics(other.x0) + other | |
if self.x0 != other.x0: | |
return HolonomicFunction(sol, self.x) | |
# if the functions have singular_ics | |
y1 = None | |
y2 = None | |
if self.is_singularics() == False and other.is_singularics() == True: | |
# convert the ordinary initial condition to singular. | |
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)] | |
y1 = {S.Zero: _y0} | |
y2 = other.y0 | |
elif self.is_singularics() == True and other.is_singularics() == False: | |
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)] | |
y1 = self.y0 | |
y2 = {S.Zero: _y0} | |
elif self.is_singularics() == True and other.is_singularics() == True: | |
y1 = self.y0 | |
y2 = other.y0 | |
# computing singular initial condition for the result | |
# taking union of the series terms of both functions | |
y0 = {} | |
for i in y1: | |
# add corresponding initial terms if the power | |
# on `x` is same | |
if i in y2: | |
y0[i] = [a + b for a, b in zip(y1[i], y2[i])] | |
else: | |
y0[i] = y1[i] | |
for i in y2: | |
if i not in y1: | |
y0[i] = y2[i] | |
return HolonomicFunction(sol, self.x, self.x0, y0) | |
def integrate(self, limits, initcond=False): | |
""" | |
Integrates the given holonomic function. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 | |
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) | |
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) | |
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) | |
""" | |
# to get the annihilator, just multiply by Dx from right | |
D = self.annihilator.parent.derivative_operator | |
# if the function have initial conditions of the series format | |
if self.is_singularics() == True: | |
r = self._singularics_to_ord() | |
if r: | |
return r.integrate(limits, initcond=initcond) | |
# computing singular initial condition for the function | |
# produced after integration. | |
y0 = {} | |
for i in self.y0: | |
c = self.y0[i] | |
c2 = [] | |
for j, cj in enumerate(c): | |
if cj == 0: | |
c2.append(S.Zero) | |
# if power on `x` is -1, the integration becomes log(x) | |
# TODO: Implement this case | |
elif i + j + 1 == 0: | |
raise NotImplementedError("logarithmic terms in the series are not supported") | |
else: | |
c2.append(cj / S(i + j + 1)) | |
y0[i + 1] = c2 | |
if hasattr(limits, "__iter__"): | |
raise NotImplementedError("Definite integration for singular initial conditions") | |
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) | |
# if no initial conditions are available for the function | |
if not self._have_init_cond(): | |
if initcond: | |
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero]) | |
return HolonomicFunction(self.annihilator * D, self.x) | |
# definite integral | |
# initial conditions for the answer will be stored at point `a`, | |
# where `a` is the lower limit of the integrand | |
if hasattr(limits, "__iter__"): | |
if len(limits) == 3 and limits[0] == self.x: | |
x0 = self.x0 | |
a = limits[1] | |
b = limits[2] | |
definite = True | |
else: | |
definite = False | |
y0 = [S.Zero] | |
y0 += self.y0 | |
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) | |
if not definite: | |
return indefinite_integral | |
# use evalf to get the values at `a` | |
if x0 != a: | |
try: | |
indefinite_expr = indefinite_integral.to_expr() | |
except (NotHyperSeriesError, NotPowerSeriesError): | |
indefinite_expr = None | |
if indefinite_expr: | |
lower = indefinite_expr.subs(self.x, a) | |
if isinstance(lower, NaN): | |
lower = indefinite_expr.limit(self.x, a) | |
else: | |
lower = indefinite_integral.evalf(a) | |
if b == self.x: | |
y0[0] = y0[0] - lower | |
return HolonomicFunction(self.annihilator * D, self.x, x0, y0) | |
elif S(b).is_Number: | |
if indefinite_expr: | |
upper = indefinite_expr.subs(self.x, b) | |
if isinstance(upper, NaN): | |
upper = indefinite_expr.limit(self.x, b) | |
else: | |
upper = indefinite_integral.evalf(b) | |
return upper - lower | |
# if the upper limit is `x`, the answer will be a function | |
if b == self.x: | |
return HolonomicFunction(self.annihilator * D, self.x, a, y0) | |
# if the upper limits is a Number, a numerical value will be returned | |
elif S(b).is_Number: | |
try: | |
s = HolonomicFunction(self.annihilator * D, self.x, a,\ | |
y0).to_expr() | |
indefinite = s.subs(self.x, b) | |
if not isinstance(indefinite, NaN): | |
return indefinite | |
else: | |
return s.limit(self.x, b) | |
except (NotHyperSeriesError, NotPowerSeriesError): | |
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) | |
return HolonomicFunction(self.annihilator * D, self.x) | |
def diff(self, *args, **kwargs): | |
r""" | |
Differentiation of the given Holonomic function. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import ZZ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() | |
cos(x) | |
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() | |
2*exp(2*x) | |
See Also | |
======== | |
integrate | |
""" | |
kwargs.setdefault('evaluate', True) | |
if args: | |
if args[0] != self.x: | |
return S.Zero | |
elif len(args) == 2: | |
sol = self | |
for i in range(args[1]): | |
sol = sol.diff(args[0]) | |
return sol | |
ann = self.annihilator | |
# if the function is constant. | |
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: | |
return S.Zero | |
# if the coefficient of y in the differential equation is zero. | |
# a shifting is done to compute the answer in this case. | |
elif ann.listofpoly[0] == ann.parent.base.zero: | |
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) | |
if self._have_init_cond(): | |
# if ordinary initial condition | |
if self.is_singularics() == False: | |
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) | |
# TODO: support for singular initial condition | |
return HolonomicFunction(sol, self.x) | |
else: | |
return HolonomicFunction(sol, self.x) | |
# the general algorithm | |
R = ann.parent.base | |
K = R.get_field() | |
seq_dmf = [K.new(i.to_list()) for i in ann.listofpoly] | |
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 | |
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] | |
rhs.insert(0, K.zero) | |
# differentiate both lhs and rhs | |
sol = _derivate_diff_eq(rhs, K) | |
# add the term y' in lhs to rhs | |
sol = _add_lists(sol, [K.zero, K.one]) | |
sol = _normalize(sol[1:], self.annihilator.parent, negative=False) | |
if not self._have_init_cond() or self.is_singularics() == True: | |
return HolonomicFunction(sol, self.x) | |
y0 = _extend_y0(self, sol.order + 1)[1:] | |
return HolonomicFunction(sol, self.x, self.x0, y0) | |
def __eq__(self, other): | |
if self.annihilator != other.annihilator or self.x != other.x: | |
return False | |
if self._have_init_cond() and other._have_init_cond(): | |
return self.x0 == other.x0 and self.y0 == other.y0 | |
return True | |
def __mul__(self, other): | |
ann_self = self.annihilator | |
if not isinstance(other, HolonomicFunction): | |
other = sympify(other) | |
if other.has(self.x): | |
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") | |
if not self._have_init_cond(): | |
return self | |
y0 = _extend_y0(self, ann_self.order) | |
y1 = [(Poly.new(j, self.x) * other).rep for j in y0] | |
return HolonomicFunction(ann_self, self.x, self.x0, y1) | |
if self.annihilator.parent.base != other.annihilator.parent.base: | |
a, b = self.unify(other) | |
return a * b | |
ann_other = other.annihilator | |
a = ann_self.order | |
b = ann_other.order | |
R = ann_self.parent.base | |
K = R.get_field() | |
list_self = [K.new(j.to_list()) for j in ann_self.listofpoly] | |
list_other = [K.new(j.to_list()) for j in ann_other.listofpoly] | |
# will be used to reduce the degree | |
self_red = [-list_self[i] / list_self[a] for i in range(a)] | |
other_red = [-list_other[i] / list_other[b] for i in range(b)] | |
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) | |
coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)] | |
coeff_mul[0][0] = K.one | |
# making the ansatz | |
lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] | |
lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose() | |
homo_sys = DomainMatrix.zeros((a*b, 1), K) | |
sol = _find_nonzero_solution(lin_sys, homo_sys) | |
# until a non trivial solution is found | |
while sol.is_zero_matrix: | |
# updating the coefficients Dx^i(f).Dx^j(g) for next degree | |
for i in range(a - 1, -1, -1): | |
for j in range(b - 1, -1, -1): | |
coeff_mul[i][j + 1] += coeff_mul[i][j] | |
coeff_mul[i + 1][j] += coeff_mul[i][j] | |
if isinstance(coeff_mul[i][j], K.dtype): | |
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j], K) | |
else: | |
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) | |
# reduce the terms to lower power using annihilators of f, g | |
for i in range(a + 1): | |
if coeff_mul[i][b].is_zero: | |
continue | |
for j in range(b): | |
coeff_mul[i][j] += other_red[j] * coeff_mul[i][b] | |
coeff_mul[i][b] = K.zero | |
# not d2 + 1, as that is already covered in previous loop | |
for j in range(b): | |
if coeff_mul[a][j] == 0: | |
continue | |
for i in range(a): | |
coeff_mul[i][j] += self_red[i] * coeff_mul[a][j] | |
coeff_mul[a][j] = K.zero | |
lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) | |
lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose() | |
sol = _find_nonzero_solution(lin_sys, homo_sys) | |
sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False) | |
if not (self._have_init_cond() and other._have_init_cond()): | |
return HolonomicFunction(sol_ann, self.x) | |
if self.is_singularics() == False and other.is_singularics() == False: | |
# if both the conditions are at same point | |
if self.x0 == other.x0: | |
# try to find more initial conditions | |
y0_self = _extend_y0(self, sol_ann.order) | |
y0_other = _extend_y0(other, sol_ann.order) | |
# h(x0) = f(x0) * g(x0) | |
y0 = [y0_self[0] * y0_other[0]] | |
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) | |
for i in range(1, min(len(y0_self), len(y0_other))): | |
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] | |
for j in range(i + 1): | |
for k in range(i + 1): | |
if j + k == i: | |
coeff[j][k] = binomial(i, j) | |
sol = 0 | |
for j in range(i + 1): | |
for k in range(i + 1): | |
sol += coeff[j][k]* y0_self[j] * y0_other[k] | |
y0.append(sol) | |
return HolonomicFunction(sol_ann, self.x, self.x0, y0) | |
# if the points are different, consider one | |
selfat0 = self.annihilator.is_singular(0) | |
otherat0 = other.annihilator.is_singular(0) | |
if self.x0 == 0 and not selfat0 and not otherat0: | |
return self * other.change_ics(0) | |
if other.x0 == 0 and not selfat0 and not otherat0: | |
return self.change_ics(0) * other | |
selfatx0 = self.annihilator.is_singular(self.x0) | |
otheratx0 = other.annihilator.is_singular(self.x0) | |
if not selfatx0 and not otheratx0: | |
return self * other.change_ics(self.x0) | |
return self.change_ics(other.x0) * other | |
if self.x0 != other.x0: | |
return HolonomicFunction(sol_ann, self.x) | |
# if the functions have singular_ics | |
y1 = None | |
y2 = None | |
if self.is_singularics() == False and other.is_singularics() == True: | |
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)] | |
y1 = {S.Zero: _y0} | |
y2 = other.y0 | |
elif self.is_singularics() == True and other.is_singularics() == False: | |
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)] | |
y1 = self.y0 | |
y2 = {S.Zero: _y0} | |
elif self.is_singularics() == True and other.is_singularics() == True: | |
y1 = self.y0 | |
y2 = other.y0 | |
y0 = {} | |
# multiply every possible pair of the series terms | |
for i in y1: | |
for j in y2: | |
k = min(len(y1[i]), len(y2[j])) | |
c = [sum((y1[i][b] * y2[j][a - b] for b in range(a + 1)), | |
start=S.Zero) for a in range(k)] | |
if not i + j in y0: | |
y0[i + j] = c | |
else: | |
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] | |
return HolonomicFunction(sol_ann, self.x, self.x0, y0) | |
__rmul__ = __mul__ | |
def __sub__(self, other): | |
return self + other * -1 | |
def __rsub__(self, other): | |
return self * -1 + other | |
def __neg__(self): | |
return -1 * self | |
def __truediv__(self, other): | |
return self * (S.One / other) | |
def __pow__(self, n): | |
if self.annihilator.order <= 1: | |
ann = self.annihilator | |
parent = ann.parent | |
if self.y0 is None: | |
y0 = None | |
else: | |
y0 = [list(self.y0)[0] ** n] | |
p0 = ann.listofpoly[0] | |
p1 = ann.listofpoly[1] | |
p0 = (Poly.new(p0, self.x) * n).rep | |
sol = [parent.base.to_sympy(i) for i in [p0, p1]] | |
dd = DifferentialOperator(sol, parent) | |
return HolonomicFunction(dd, self.x, self.x0, y0) | |
if n < 0: | |
raise NotHolonomicError("Negative Power on a Holonomic Function") | |
Dx = self.annihilator.parent.derivative_operator | |
result = HolonomicFunction(Dx, self.x, S.Zero, [S.One]) | |
if n == 0: | |
return result | |
x = self | |
while True: | |
if n % 2: | |
result *= x | |
n >>= 1 | |
if not n: | |
break | |
x *= x | |
return result | |
def degree(self): | |
""" | |
Returns the highest power of `x` in the annihilator. | |
""" | |
return max(i.degree() for i in self.annihilator.listofpoly) | |
def composition(self, expr, *args, **kwargs): | |
""" | |
Returns function after composition of a holonomic | |
function with an algebraic function. The method cannot compute | |
initial conditions for the result by itself, so they can be also be | |
provided. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) | |
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) | |
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) | |
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) | |
See Also | |
======== | |
from_hyper | |
""" | |
R = self.annihilator.parent | |
a = self.annihilator.order | |
diff = expr.diff(self.x) | |
listofpoly = self.annihilator.listofpoly | |
for i, j in enumerate(listofpoly): | |
if isinstance(j, self.annihilator.parent.base.dtype): | |
listofpoly[i] = self.annihilator.parent.base.to_sympy(j) | |
r = listofpoly[a].subs({self.x:expr}) | |
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] | |
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) | |
coeffs[0] = S.One | |
system = [coeffs] | |
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose() | |
while True: | |
coeffs_next = [p.diff(self.x) for p in coeffs] | |
for i in range(a - 1): | |
coeffs_next[i + 1] += (coeffs[i] * diff) | |
for i in range(a): | |
coeffs_next[i] += (coeffs[-1] * subs[i] * diff) | |
coeffs = coeffs_next | |
# check for linear relations | |
system.append(coeffs) | |
sol, taus = (Matrix(system).transpose() | |
).gauss_jordan_solve(homogeneous) | |
if sol.is_zero_matrix is not True: | |
break | |
tau = list(taus)[0] | |
sol = sol.subs(tau, 1) | |
sol = _normalize(sol[0:], R, negative=False) | |
# if initial conditions are given for the resulting function | |
if args: | |
return HolonomicFunction(sol, self.x, args[0], args[1]) | |
return HolonomicFunction(sol, self.x) | |
def to_sequence(self, lb=True): | |
r""" | |
Finds recurrence relation for the coefficients in the series expansion | |
of the function about :math:`x_0`, where :math:`x_0` is the point at | |
which the initial condition is stored. | |
Explanation | |
=========== | |
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` | |
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the | |
smallest ``n`` for which the recurrence holds true. | |
If the point :math:`x_0` is regular singular, a list of solutions in | |
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. | |
Each tuple in this vector represents a recurrence relation :math:`R` | |
associated with a root of the indicial equation ``p``. Conditions of | |
a different format can also be provided in this case, see the | |
docstring of HolonomicFunction class. | |
If it's not possible to numerically compute a initial condition, | |
it is returned as a symbol :math:`C_j`, denoting the coefficient of | |
:math:`(x - x_0)^j` in the power series about :math:`x_0`. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols, S | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() | |
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] | |
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() | |
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] | |
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() | |
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] | |
See Also | |
======== | |
HolonomicFunction.series | |
References | |
========== | |
.. [1] https://hal.inria.fr/inria-00070025/document | |
.. [2] https://www3.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf | |
""" | |
if self.x0 != 0: | |
return self.shift_x(self.x0).to_sequence() | |
# check whether a power series exists if the point is singular | |
if self.annihilator.is_singular(self.x0): | |
return self._frobenius(lb=lb) | |
dict1 = {} | |
n = Symbol('n', integer=True) | |
dom = self.annihilator.parent.base.dom | |
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') | |
# substituting each term of the form `x^k Dx^j` in the | |
# annihilator, according to the formula below: | |
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) | |
# for explanation see [2]. | |
for i, j in enumerate(self.annihilator.listofpoly): | |
listofdmp = j.all_coeffs() | |
degree = len(listofdmp) - 1 | |
for k in range(degree + 1): | |
coeff = listofdmp[degree - k] | |
if coeff == 0: | |
continue | |
if (i - k, k) in dict1: | |
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) | |
else: | |
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) | |
sol = [] | |
keylist = [i[0] for i in dict1] | |
lower = min(keylist) | |
upper = max(keylist) | |
degree = self.degree() | |
# the recurrence relation holds for all values of | |
# n greater than smallest_n, i.e. n >= smallest_n | |
smallest_n = lower + degree | |
dummys = {} | |
eqs = [] | |
unknowns = [] | |
# an appropriate shift of the recurrence | |
for j in range(lower, upper + 1): | |
if j in keylist: | |
temp = sum((v.subs(n, n - lower) | |
for k, v in dict1.items() if k[0] == j), | |
start=S.Zero) | |
sol.append(temp) | |
else: | |
sol.append(S.Zero) | |
# the recurrence relation | |
sol = RecurrenceOperator(sol, R) | |
# computing the initial conditions for recurrence | |
order = sol.order | |
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') | |
all_roots = all_roots.keys() | |
if all_roots: | |
max_root = max(all_roots) + 1 | |
smallest_n = max(max_root, smallest_n) | |
order += smallest_n | |
y0 = _extend_y0(self, order) | |
# u(n) = y^n(0)/factorial(n) | |
u0 = [j / factorial(i) for i, j in enumerate(y0)] | |
# if sufficient conditions can't be computed then | |
# try to use the series method i.e. | |
# equate the coefficients of x^k in the equation formed by | |
# substituting the series in differential equation, to zero. | |
if len(u0) < order: | |
for i in range(degree): | |
eq = S.Zero | |
for j in dict1: | |
if i + j[0] < 0: | |
dummys[i + j[0]] = S.Zero | |
elif i + j[0] < len(u0): | |
dummys[i + j[0]] = u0[i + j[0]] | |
elif not i + j[0] in dummys: | |
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) | |
unknowns.append(dummys[i + j[0]]) | |
if j[1] <= i: | |
eq += dict1[j].subs(n, i) * dummys[i + j[0]] | |
eqs.append(eq) | |
# solve the system of equations formed | |
soleqs = solve(eqs, *unknowns) | |
if isinstance(soleqs, dict): | |
for i in range(len(u0), order): | |
if i not in dummys: | |
dummys[i] = Symbol('C_%s' %i) | |
if dummys[i] in soleqs: | |
u0.append(soleqs[dummys[i]]) | |
else: | |
u0.append(dummys[i]) | |
if lb: | |
return [(HolonomicSequence(sol, u0), smallest_n)] | |
return [HolonomicSequence(sol, u0)] | |
for i in range(len(u0), order): | |
if i not in dummys: | |
dummys[i] = Symbol('C_%s' %i) | |
s = False | |
for j in soleqs: | |
if dummys[i] in j: | |
u0.append(j[dummys[i]]) | |
s = True | |
if not s: | |
u0.append(dummys[i]) | |
if lb: | |
return [(HolonomicSequence(sol, u0), smallest_n)] | |
return [HolonomicSequence(sol, u0)] | |
def _frobenius(self, lb=True): | |
# compute the roots of indicial equation | |
indicialroots = self._indicial() | |
reals = [] | |
compl = [] | |
for i in ordered(indicialroots.keys()): | |
if i.is_real: | |
reals.extend([i] * indicialroots[i]) | |
else: | |
a, b = i.as_real_imag() | |
compl.extend([(i, a, b)] * indicialroots[i]) | |
# sort the roots for a fixed ordering of solution | |
compl.sort(key=lambda x : x[1]) | |
compl.sort(key=lambda x : x[2]) | |
reals.sort() | |
# grouping the roots, roots differ by an integer are put in the same group. | |
grp = [] | |
for i in reals: | |
if len(grp) == 0: | |
grp.append([i]) | |
continue | |
for j in grp: | |
if int_valued(j[0] - i): | |
j.append(i) | |
break | |
else: | |
grp.append([i]) | |
# True if none of the roots differ by an integer i.e. | |
# each element in group have only one member | |
independent = all(len(i) == 1 for i in grp) | |
allpos = all(i >= 0 for i in reals) | |
allint = all(int_valued(i) for i in reals) | |
# if initial conditions are provided | |
# then use them. | |
if self.is_singularics() == True: | |
rootstoconsider = [] | |
for i in ordered(self.y0.keys()): | |
for j in ordered(indicialroots.keys()): | |
if equal_valued(j, i): | |
rootstoconsider.append(i) | |
elif allpos and allint: | |
rootstoconsider = [min(reals)] | |
elif independent: | |
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] | |
elif not allint: | |
rootstoconsider = [i for i in reals if not int(i) == i] | |
elif not allpos: | |
if not self._have_init_cond() or S(self.y0[0]).is_finite == False: | |
rootstoconsider = [min(reals)] | |
else: | |
posroots = [i for i in reals if i >= 0] | |
rootstoconsider = [min(posroots)] | |
n = Symbol('n', integer=True) | |
dom = self.annihilator.parent.base.dom | |
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') | |
finalsol = [] | |
char = ord('C') | |
for p in rootstoconsider: | |
dict1 = {} | |
for i, j in enumerate(self.annihilator.listofpoly): | |
listofdmp = j.all_coeffs() | |
degree = len(listofdmp) - 1 | |
for k in range(degree + 1): | |
coeff = listofdmp[degree - k] | |
if coeff == 0: | |
continue | |
if (i - k, k - i) in dict1: | |
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) | |
else: | |
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) | |
sol = [] | |
keylist = [i[0] for i in dict1] | |
lower = min(keylist) | |
upper = max(keylist) | |
degree = max(i[1] for i in dict1) | |
degree2 = min(i[1] for i in dict1) | |
smallest_n = lower + degree | |
dummys = {} | |
eqs = [] | |
unknowns = [] | |
for j in range(lower, upper + 1): | |
if j in keylist: | |
temp = sum((v.subs(n, n - lower) | |
for k, v in dict1.items() if k[0] == j), | |
start=S.Zero) | |
sol.append(temp) | |
else: | |
sol.append(S.Zero) | |
# the recurrence relation | |
sol = RecurrenceOperator(sol, R) | |
# computing the initial conditions for recurrence | |
order = sol.order | |
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') | |
all_roots = all_roots.keys() | |
if all_roots: | |
max_root = max(all_roots) + 1 | |
smallest_n = max(max_root, smallest_n) | |
order += smallest_n | |
u0 = [] | |
if self.is_singularics() == True: | |
u0 = self.y0[p] | |
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: | |
y0 = _extend_y0(self, order + int(p)) | |
# u(n) = y^n(0)/factorial(n) | |
if len(y0) > int(p): | |
u0 = [y0[i] / factorial(i) for i in range(int(p), len(y0))] | |
if len(u0) < order: | |
for i in range(degree2, degree): | |
eq = S.Zero | |
for j in dict1: | |
if i + j[0] < 0: | |
dummys[i + j[0]] = S.Zero | |
elif i + j[0] < len(u0): | |
dummys[i + j[0]] = u0[i + j[0]] | |
elif not i + j[0] in dummys: | |
letter = chr(char) + '_%s' %(i + j[0]) | |
dummys[i + j[0]] = Symbol(letter) | |
unknowns.append(dummys[i + j[0]]) | |
if j[1] <= i: | |
eq += dict1[j].subs(n, i) * dummys[i + j[0]] | |
eqs.append(eq) | |
# solve the system of equations formed | |
soleqs = solve(eqs, *unknowns) | |
if isinstance(soleqs, dict): | |
for i in range(len(u0), order): | |
if i not in dummys: | |
letter = chr(char) + '_%s' %i | |
dummys[i] = Symbol(letter) | |
if dummys[i] in soleqs: | |
u0.append(soleqs[dummys[i]]) | |
else: | |
u0.append(dummys[i]) | |
if lb: | |
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) | |
continue | |
else: | |
finalsol.append((HolonomicSequence(sol, u0), p)) | |
continue | |
for i in range(len(u0), order): | |
if i not in dummys: | |
letter = chr(char) + '_%s' %i | |
dummys[i] = Symbol(letter) | |
s = False | |
for j in soleqs: | |
if dummys[i] in j: | |
u0.append(j[dummys[i]]) | |
s = True | |
if not s: | |
u0.append(dummys[i]) | |
if lb: | |
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) | |
else: | |
finalsol.append((HolonomicSequence(sol, u0), p)) | |
char += 1 | |
return finalsol | |
def series(self, n=6, coefficient=False, order=True, _recur=None): | |
r""" | |
Finds the power series expansion of given holonomic function about :math:`x_0`. | |
Explanation | |
=========== | |
A list of series might be returned if :math:`x_0` is a regular point with | |
multiple roots of the indicial equation. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x | |
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) | |
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) | |
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) | |
See Also | |
======== | |
HolonomicFunction.to_sequence | |
""" | |
if _recur is None: | |
recurrence = self.to_sequence() | |
else: | |
recurrence = _recur | |
if isinstance(recurrence, tuple) and len(recurrence) == 2: | |
recurrence = recurrence[0] | |
constantpower = 0 | |
elif isinstance(recurrence, tuple) and len(recurrence) == 3: | |
constantpower = recurrence[1] | |
recurrence = recurrence[0] | |
elif len(recurrence) == 1 and len(recurrence[0]) == 2: | |
recurrence = recurrence[0][0] | |
constantpower = 0 | |
elif len(recurrence) == 1 and len(recurrence[0]) == 3: | |
constantpower = recurrence[0][1] | |
recurrence = recurrence[0][0] | |
else: | |
return [self.series(_recur=i) for i in recurrence] | |
n = n - int(constantpower) | |
l = len(recurrence.u0) - 1 | |
k = recurrence.recurrence.order | |
x = self.x | |
x0 = self.x0 | |
seq_dmp = recurrence.recurrence.listofpoly | |
R = recurrence.recurrence.parent.base | |
K = R.get_field() | |
seq = [K.new(j.to_list()) for j in seq_dmp] | |
sub = [-seq[i] / seq[k] for i in range(k)] | |
sol = list(recurrence.u0) | |
if l + 1 < n: | |
# use the initial conditions to find the next term | |
for i in range(l + 1 - k, n - k): | |
coeff = sum((DMFsubs(sub[j], i) * sol[i + j] | |
for j in range(k) if i + j >= 0), start=S.Zero) | |
sol.append(coeff) | |
if coefficient: | |
return sol | |
ser = sum((x**(i + constantpower) * j for i, j in enumerate(sol)), | |
start=S.Zero) | |
if order: | |
ser += Order(x**(n + int(constantpower)), x) | |
if x0 != 0: | |
return ser.subs(x, x - x0) | |
return ser | |
def _indicial(self): | |
""" | |
Computes roots of the Indicial equation. | |
""" | |
if self.x0 != 0: | |
return self.shift_x(self.x0)._indicial() | |
list_coeff = self.annihilator.listofpoly | |
R = self.annihilator.parent.base | |
x = self.x | |
s = R.zero | |
y = R.one | |
def _pole_degree(poly): | |
root_all = roots(R.to_sympy(poly), x, filter='Z') | |
if 0 in root_all.keys(): | |
return root_all[0] | |
else: | |
return 0 | |
degree = max(j.degree() for j in list_coeff) | |
inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) | |
deg = lambda q: inf if q.is_zero else _pole_degree(q) | |
b = min(deg(q) - j for j, q in enumerate(list_coeff)) | |
for i, j in enumerate(list_coeff): | |
listofdmp = j.all_coeffs() | |
degree = len(listofdmp) - 1 | |
if 0 <= i + b <= degree: | |
s = s + listofdmp[degree - i - b] * y | |
y *= R.from_sympy(x - i) | |
return roots(R.to_sympy(s), x) | |
def evalf(self, points, method='RK4', h=0.05, derivatives=False): | |
r""" | |
Finds numerical value of a holonomic function using numerical methods. | |
(RK4 by default). A set of points (real or complex) must be provided | |
which will be the path for the numerical integration. | |
Explanation | |
=========== | |
The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical | |
values will be computed at each point in this order | |
:math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`. | |
Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import QQ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') | |
A straight line on the real axis from (0 to 1) | |
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] | |
Runge-Kutta 4th order on e^x from 0.1 to 1. | |
Exact solution at 1 is 2.71828182845905 | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) | |
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, | |
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, | |
2.45960141378007, 2.71827974413517] | |
Euler's method for the same | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') | |
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, | |
2.357947691, 2.5937424601] | |
One can also observe that the value obtained using Runge-Kutta 4th order | |
is much more accurate than Euler's method. | |
""" | |
from sympy.holonomic.numerical import _evalf | |
lp = False | |
# if a point `b` is given instead of a mesh | |
if not hasattr(points, "__iter__"): | |
lp = True | |
b = S(points) | |
if self.x0 == b: | |
return _evalf(self, [b], method=method, derivatives=derivatives)[-1] | |
if not b.is_Number: | |
raise NotImplementedError | |
a = self.x0 | |
if a > b: | |
h = -h | |
n = int((b - a) / h) | |
points = [a + h] | |
for i in range(n - 1): | |
points.append(points[-1] + h) | |
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): | |
if i == self.x0 or i in points: | |
raise SingularityError(self, i) | |
if lp: | |
return _evalf(self, points, method=method, derivatives=derivatives)[-1] | |
return _evalf(self, points, method=method, derivatives=derivatives) | |
def change_x(self, z): | |
""" | |
Changes only the variable of Holonomic Function, for internal | |
purposes. For composition use HolonomicFunction.composition() | |
""" | |
dom = self.annihilator.parent.base.dom | |
R = dom.old_poly_ring(z) | |
parent, _ = DifferentialOperators(R, 'Dx') | |
sol = [R(j.to_list()) for j in self.annihilator.listofpoly] | |
sol = DifferentialOperator(sol, parent) | |
return HolonomicFunction(sol, z, self.x0, self.y0) | |
def shift_x(self, a): | |
""" | |
Substitute `x + a` for `x`. | |
""" | |
x = self.x | |
listaftershift = self.annihilator.listofpoly | |
base = self.annihilator.parent.base | |
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] | |
sol = DifferentialOperator(sol, self.annihilator.parent) | |
x0 = self.x0 - a | |
if not self._have_init_cond(): | |
return HolonomicFunction(sol, x) | |
return HolonomicFunction(sol, x, x0, self.y0) | |
def to_hyper(self, as_list=False, _recur=None): | |
r""" | |
Returns a hypergeometric function (or linear combination of them) | |
representing the given holonomic function. | |
Explanation | |
=========== | |
Returns an answer of the form: | |
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots` | |
This is very useful as one can now use ``hyperexpand`` to find the | |
symbolic expressions/functions. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import ZZ | |
>>> from sympy import symbols | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') | |
>>> # sin(x) | |
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() | |
x*hyper((), (3/2,), -x**2/4) | |
>>> # exp(x) | |
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() | |
hyper((), (), x) | |
See Also | |
======== | |
from_hyper, from_meijerg | |
""" | |
if _recur is None: | |
recurrence = self.to_sequence() | |
else: | |
recurrence = _recur | |
if isinstance(recurrence, tuple) and len(recurrence) == 2: | |
smallest_n = recurrence[1] | |
recurrence = recurrence[0] | |
constantpower = 0 | |
elif isinstance(recurrence, tuple) and len(recurrence) == 3: | |
smallest_n = recurrence[2] | |
constantpower = recurrence[1] | |
recurrence = recurrence[0] | |
elif len(recurrence) == 1 and len(recurrence[0]) == 2: | |
smallest_n = recurrence[0][1] | |
recurrence = recurrence[0][0] | |
constantpower = 0 | |
elif len(recurrence) == 1 and len(recurrence[0]) == 3: | |
smallest_n = recurrence[0][2] | |
constantpower = recurrence[0][1] | |
recurrence = recurrence[0][0] | |
else: | |
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) | |
for i in recurrence[1:]: | |
sol += self.to_hyper(as_list=as_list, _recur=i) | |
return sol | |
u0 = recurrence.u0 | |
r = recurrence.recurrence | |
x = self.x | |
x0 = self.x0 | |
# order of the recurrence relation | |
m = r.order | |
# when no recurrence exists, and the power series have finite terms | |
if m == 0: | |
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') | |
sol = S.Zero | |
for j, i in enumerate(nonzeroterms): | |
if i < 0 or not int_valued(i): | |
continue | |
i = int(i) | |
if i < len(u0): | |
if isinstance(u0[i], (PolyElement, FracElement)): | |
u0[i] = u0[i].as_expr() | |
sol += u0[i] * x**i | |
else: | |
sol += Symbol('C_%s' %j) * x**i | |
if isinstance(sol, (PolyElement, FracElement)): | |
sol = sol.as_expr() * x**constantpower | |
else: | |
sol = sol * x**constantpower | |
if as_list: | |
if x0 != 0: | |
return [(sol.subs(x, x - x0), )] | |
return [(sol, )] | |
if x0 != 0: | |
return sol.subs(x, x - x0) | |
return sol | |
if smallest_n + m > len(u0): | |
raise NotImplementedError("Can't compute sufficient Initial Conditions") | |
# check if the recurrence represents a hypergeometric series | |
if any(i != r.parent.base.zero for i in r.listofpoly[1:-1]): | |
raise NotHyperSeriesError(self, self.x0) | |
a = r.listofpoly[0] | |
b = r.listofpoly[-1] | |
# the constant multiple of argument of hypergeometric function | |
if isinstance(a.LC(), (PolyElement, FracElement)): | |
c = - (S(a.LC().as_expr()) * m**(a.degree())) / (S(b.LC().as_expr()) * m**(b.degree())) | |
else: | |
c = - (S(a.LC()) * m**(a.degree())) / (S(b.LC()) * m**(b.degree())) | |
sol = 0 | |
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) | |
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) | |
# iterate through the initial conditions to find | |
# the hypergeometric representation of the given | |
# function. | |
# The answer will be a linear combination | |
# of different hypergeometric series which satisfies | |
# the recurrence. | |
if as_list: | |
listofsol = [] | |
for i in range(smallest_n + m): | |
# if the recurrence relation doesn't hold for `n = i`, | |
# then a Hypergeometric representation doesn't exist. | |
# add the algebraic term a * x**i to the solution, | |
# where a is u0[i] | |
if i < smallest_n: | |
if as_list: | |
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) | |
else: | |
sol += S(u0[i]) * x**i | |
continue | |
# if the coefficient u0[i] is zero, then the | |
# independent hypergeomtric series starting with | |
# x**i is not a part of the answer. | |
if S(u0[i]) == 0: | |
continue | |
ap = [] | |
bq = [] | |
# substitute m * n + i for n | |
for k in ordered(arg1.keys()): | |
ap.extend([nsimplify((i - k) / m)] * arg1[k]) | |
for k in ordered(arg2.keys()): | |
bq.extend([nsimplify((i - k) / m)] * arg2[k]) | |
# convention of (k + 1) in the denominator | |
if 1 in bq: | |
bq.remove(1) | |
else: | |
ap.append(1) | |
if as_list: | |
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) | |
else: | |
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i | |
if as_list: | |
return listofsol | |
sol = sol * x**constantpower | |
if x0 != 0: | |
return sol.subs(x, x - x0) | |
return sol | |
def to_expr(self): | |
""" | |
Converts a Holonomic Function back to elementary functions. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators | |
>>> from sympy import ZZ | |
>>> from sympy import symbols, S | |
>>> x = symbols('x') | |
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') | |
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() | |
besselj(1, x) | |
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() | |
x*log(x + 1) + log(x + 1) + 1 | |
""" | |
return hyperexpand(self.to_hyper()).simplify() | |
def change_ics(self, b, lenics=None): | |
""" | |
Changes the point `x0` to ``b`` for initial conditions. | |
Examples | |
======== | |
>>> from sympy.holonomic import expr_to_holonomic | |
>>> from sympy import symbols, sin, exp | |
>>> x = symbols('x') | |
>>> expr_to_holonomic(sin(x)).change_ics(1) | |
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) | |
>>> expr_to_holonomic(exp(x)).change_ics(2) | |
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) | |
""" | |
symbolic = True | |
if lenics is None and len(self.y0) > self.annihilator.order: | |
lenics = len(self.y0) | |
dom = self.annihilator.parent.base.domain | |
try: | |
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) | |
except (NotPowerSeriesError, NotHyperSeriesError): | |
symbolic = False | |
if symbolic and sol.x0 == b: | |
return sol | |
y0 = self.evalf(b, derivatives=True) | |
return HolonomicFunction(self.annihilator, self.x, b, y0) | |
def to_meijerg(self): | |
""" | |
Returns a linear combination of Meijer G-functions. | |
Examples | |
======== | |
>>> from sympy.holonomic import expr_to_holonomic | |
>>> from sympy import sin, cos, hyperexpand, log, symbols | |
>>> x = symbols('x') | |
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) | |
sin(x) + cos(x) | |
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() | |
log(x) | |
See Also | |
======== | |
to_hyper | |
""" | |
# convert to hypergeometric first | |
rep = self.to_hyper(as_list=True) | |
sol = S.Zero | |
for i in rep: | |
if len(i) == 1: | |
sol += i[0] | |
elif len(i) == 2: | |
sol += i[0] * _hyper_to_meijerg(i[1]) | |
return sol | |
def from_hyper(func, x0=0, evalf=False): | |
r""" | |
Converts a hypergeometric function to holonomic. | |
``func`` is the Hypergeometric Function and ``x0`` is the point at | |
which initial conditions are required. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import from_hyper | |
>>> from sympy import symbols, hyper, S | |
>>> x = symbols('x') | |
>>> from_hyper(hyper([], [S(3)/2], x**2/4)) | |
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) | |
""" | |
a = func.ap | |
b = func.bq | |
z = func.args[2] | |
x = z.atoms(Symbol).pop() | |
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') | |
# generalized hypergeometric differential equation | |
xDx = x*Dx | |
r1 = 1 | |
for ai in a: # XXX gives sympify error if Mul is used with list of all factors | |
r1 *= xDx + ai | |
xDx_1 = xDx - 1 | |
# r2 = Mul(*([Dx] + [xDx_1 + bi for bi in b])) # XXX gives sympify error | |
r2 = Dx | |
for bi in b: | |
r2 *= xDx_1 + bi | |
sol = r1 - r2 | |
simp = hyperexpand(func) | |
if simp in (Infinity, NegativeInfinity): | |
return HolonomicFunction(sol, x).composition(z) | |
def _find_conditions(simp, x, x0, order, evalf=False): | |
y0 = [] | |
for i in range(order): | |
if evalf: | |
val = simp.subs(x, x0).evalf() | |
else: | |
val = simp.subs(x, x0) | |
# return None if it is Infinite or NaN | |
if val.is_finite is False or isinstance(val, NaN): | |
return None | |
y0.append(val) | |
simp = simp.diff(x) | |
return y0 | |
# if the function is known symbolically | |
if not isinstance(simp, hyper): | |
y0 = _find_conditions(simp, x, x0, sol.order) | |
while not y0: | |
# if values don't exist at 0, then try to find initial | |
# conditions at 1. If it doesn't exist at 1 too then | |
# try 2 and so on. | |
x0 += 1 | |
y0 = _find_conditions(simp, x, x0, sol.order) | |
return HolonomicFunction(sol, x).composition(z, x0, y0) | |
if isinstance(simp, hyper): | |
x0 = 1 | |
# use evalf if the function can't be simplified | |
y0 = _find_conditions(simp, x, x0, sol.order, evalf) | |
while not y0: | |
x0 += 1 | |
y0 = _find_conditions(simp, x, x0, sol.order, evalf) | |
return HolonomicFunction(sol, x).composition(z, x0, y0) | |
return HolonomicFunction(sol, x).composition(z) | |
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): | |
""" | |
Converts a Meijer G-function to Holonomic. | |
``func`` is the G-Function and ``x0`` is the point at | |
which initial conditions are required. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import from_meijerg | |
>>> from sympy import symbols, meijerg, S | |
>>> x = symbols('x') | |
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) | |
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) | |
""" | |
a = func.ap | |
b = func.bq | |
n = len(func.an) | |
m = len(func.bm) | |
p = len(a) | |
z = func.args[2] | |
x = z.atoms(Symbol).pop() | |
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') | |
# compute the differential equation satisfied by the | |
# Meijer G-function. | |
xDx = x*Dx | |
xDx1 = xDx + 1 | |
r1 = x*(-1)**(m + n - p) | |
for ai in a: # XXX gives sympify error if args given in list | |
r1 *= xDx1 - ai | |
# r2 = Mul(*[xDx - bi for bi in b]) # gives sympify error | |
r2 = 1 | |
for bi in b: | |
r2 *= xDx - bi | |
sol = r1 - r2 | |
if not initcond: | |
return HolonomicFunction(sol, x).composition(z) | |
simp = hyperexpand(func) | |
if simp in (Infinity, NegativeInfinity): | |
return HolonomicFunction(sol, x).composition(z) | |
def _find_conditions(simp, x, x0, order, evalf=False): | |
y0 = [] | |
for i in range(order): | |
if evalf: | |
val = simp.subs(x, x0).evalf() | |
else: | |
val = simp.subs(x, x0) | |
if val.is_finite is False or isinstance(val, NaN): | |
return None | |
y0.append(val) | |
simp = simp.diff(x) | |
return y0 | |
# computing initial conditions | |
if not isinstance(simp, meijerg): | |
y0 = _find_conditions(simp, x, x0, sol.order) | |
while not y0: | |
x0 += 1 | |
y0 = _find_conditions(simp, x, x0, sol.order) | |
return HolonomicFunction(sol, x).composition(z, x0, y0) | |
if isinstance(simp, meijerg): | |
x0 = 1 | |
y0 = _find_conditions(simp, x, x0, sol.order, evalf) | |
while not y0: | |
x0 += 1 | |
y0 = _find_conditions(simp, x, x0, sol.order, evalf) | |
return HolonomicFunction(sol, x).composition(z, x0, y0) | |
return HolonomicFunction(sol, x).composition(z) | |
x_1 = Dummy('x_1') | |
_lookup_table = None | |
domain_for_table = None | |
from sympy.integrals.meijerint import _mytype | |
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): | |
""" | |
Converts a function or an expression to a holonomic function. | |
Parameters | |
========== | |
func: | |
The expression to be converted. | |
x: | |
variable for the function. | |
x0: | |
point at which initial condition must be computed. | |
y0: | |
One can optionally provide initial condition if the method | |
is not able to do it automatically. | |
lenics: | |
Number of terms in the initial condition. By default it is | |
equal to the order of the annihilator. | |
domain: | |
Ground domain for the polynomials in ``x`` appearing as coefficients | |
in the annihilator. | |
initcond: | |
Set it false if you do not want the initial conditions to be computed. | |
Examples | |
======== | |
>>> from sympy.holonomic.holonomic import expr_to_holonomic | |
>>> from sympy import sin, exp, symbols | |
>>> x = symbols('x') | |
>>> expr_to_holonomic(sin(x)) | |
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) | |
>>> expr_to_holonomic(exp(x)) | |
HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) | |
See Also | |
======== | |
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table | |
""" | |
func = sympify(func) | |
syms = func.free_symbols | |
if not x: | |
if len(syms) == 1: | |
x= syms.pop() | |
else: | |
raise ValueError("Specify the variable for the function") | |
elif x in syms: | |
syms.remove(x) | |
extra_syms = list(syms) | |
if domain is None: | |
if func.has(Float): | |
domain = RR | |
else: | |
domain = QQ | |
if len(extra_syms) != 0: | |
domain = domain[extra_syms].get_field() | |
# try to convert if the function is polynomial or rational | |
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) | |
if solpoly: | |
return solpoly | |
# create the lookup table | |
global _lookup_table, domain_for_table | |
if not _lookup_table: | |
domain_for_table = domain | |
_lookup_table = {} | |
_create_table(_lookup_table, domain=domain) | |
elif domain != domain_for_table: | |
domain_for_table = domain | |
_lookup_table = {} | |
_create_table(_lookup_table, domain=domain) | |
# use the table directly to convert to Holonomic | |
if func.is_Function: | |
f = func.subs(x, x_1) | |
t = _mytype(f, x_1) | |
if t in _lookup_table: | |
l = _lookup_table[t] | |
sol = l[0][1].change_x(x) | |
else: | |
sol = _convert_meijerint(func, x, initcond=False, domain=domain) | |
if not sol: | |
raise NotImplementedError | |
if y0: | |
sol.y0 = y0 | |
if y0 or not initcond: | |
sol.x0 = x0 | |
return sol | |
if not lenics: | |
lenics = sol.annihilator.order | |
_y0 = _find_conditions(func, x, x0, lenics) | |
while not _y0: | |
x0 += 1 | |
_y0 = _find_conditions(func, x, x0, lenics) | |
return HolonomicFunction(sol.annihilator, x, x0, _y0) | |
if y0 or not initcond: | |
sol = sol.composition(func.args[0]) | |
if y0: | |
sol.y0 = y0 | |
sol.x0 = x0 | |
return sol | |
if not lenics: | |
lenics = sol.annihilator.order | |
_y0 = _find_conditions(func, x, x0, lenics) | |
while not _y0: | |
x0 += 1 | |
_y0 = _find_conditions(func, x, x0, lenics) | |
return sol.composition(func.args[0], x0, _y0) | |
# iterate through the expression recursively | |
args = func.args | |
f = func.func | |
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) | |
if f is Add: | |
for i in range(1, len(args)): | |
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) | |
elif f is Mul: | |
for i in range(1, len(args)): | |
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) | |
elif f is Pow: | |
sol = sol**args[1] | |
sol.x0 = x0 | |
if not sol: | |
raise NotImplementedError | |
if y0: | |
sol.y0 = y0 | |
if y0 or not initcond: | |
return sol | |
if sol.y0: | |
return sol | |
if not lenics: | |
lenics = sol.annihilator.order | |
if sol.annihilator.is_singular(x0): | |
r = sol._indicial() | |
l = list(r) | |
if len(r) == 1 and r[l[0]] == S.One: | |
r = l[0] | |
g = func / (x - x0)**r | |
singular_ics = _find_conditions(g, x, x0, lenics) | |
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] | |
y0 = {r:singular_ics} | |
return HolonomicFunction(sol.annihilator, x, x0, y0) | |
_y0 = _find_conditions(func, x, x0, lenics) | |
while not _y0: | |
x0 += 1 | |
_y0 = _find_conditions(func, x, x0, lenics) | |
return HolonomicFunction(sol.annihilator, x, x0, _y0) | |
## Some helper functions ## | |
def _normalize(list_of, parent, negative=True): | |
""" | |
Normalize a given annihilator | |
""" | |
num = [] | |
denom = [] | |
base = parent.base | |
K = base.get_field() | |
lcm_denom = base.from_sympy(S.One) | |
list_of_coeff = [] | |
# convert polynomials to the elements of associated | |
# fraction field | |
for i, j in enumerate(list_of): | |
if isinstance(j, base.dtype): | |
list_of_coeff.append(K.new(j.to_list())) | |
elif not isinstance(j, K.dtype): | |
list_of_coeff.append(K.from_sympy(sympify(j))) | |
else: | |
list_of_coeff.append(j) | |
# corresponding numerators of the sequence of polynomials | |
num.append(list_of_coeff[i].numer()) | |
# corresponding denominators | |
denom.append(list_of_coeff[i].denom()) | |
# lcm of denominators in the coefficients | |
for i in denom: | |
lcm_denom = i.lcm(lcm_denom) | |
if negative: | |
lcm_denom = -lcm_denom | |
lcm_denom = K.new(lcm_denom.to_list()) | |
# multiply the coefficients with lcm | |
for i, j in enumerate(list_of_coeff): | |
list_of_coeff[i] = j * lcm_denom | |
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).to_list()) | |
# gcd of numerators in the coefficients | |
for i in num: | |
gcd_numer = i.gcd(gcd_numer) | |
gcd_numer = K.new(gcd_numer.to_list()) | |
# divide all the coefficients by the gcd | |
for i, j in enumerate(list_of_coeff): | |
frac_ans = j / gcd_numer | |
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).to_list()) | |
return DifferentialOperator(list_of_coeff, parent) | |
def _derivate_diff_eq(listofpoly, K): | |
""" | |
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 | |
where a0, a1,... are polynomials or rational functions. The function | |
returns b0, b1, b2... such that the differential equation | |
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the | |
former equation. | |
""" | |
sol = [] | |
a = len(listofpoly) - 1 | |
sol.append(DMFdiff(listofpoly[0], K)) | |
for i, j in enumerate(listofpoly[1:]): | |
sol.append(DMFdiff(j, K) + listofpoly[i]) | |
sol.append(listofpoly[a]) | |
return sol | |
def _hyper_to_meijerg(func): | |
""" | |
Converts a `hyper` to meijerg. | |
""" | |
ap = func.ap | |
bq = func.bq | |
if any(i <= 0 and int(i) == i for i in ap): | |
return hyperexpand(func) | |
z = func.args[2] | |
# parameters of the `meijerg` function. | |
an = (1 - i for i in ap) | |
anp = () | |
bm = (S.Zero, ) | |
bmq = (1 - i for i in bq) | |
k = S.One | |
for i in bq: | |
k = k * gamma(i) | |
for i in ap: | |
k = k / gamma(i) | |
return k * meijerg(an, anp, bm, bmq, -z) | |
def _add_lists(list1, list2): | |
"""Takes polynomial sequences of two annihilators a and b and returns | |
the list of polynomials of sum of a and b. | |
""" | |
if len(list1) <= len(list2): | |
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] | |
else: | |
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] | |
return sol | |
def _extend_y0(Holonomic, n): | |
""" | |
Tries to find more initial conditions by substituting the initial | |
value point in the differential equation. | |
""" | |
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: | |
return Holonomic.y0 | |
annihilator = Holonomic.annihilator | |
a = annihilator.order | |
listofpoly = [] | |
y0 = Holonomic.y0 | |
R = annihilator.parent.base | |
K = R.get_field() | |
for j in annihilator.listofpoly: | |
if isinstance(j, annihilator.parent.base.dtype): | |
listofpoly.append(K.new(j.to_list())) | |
if len(y0) < a or n <= len(y0): | |
return y0 | |
list_red = [-listofpoly[i] / listofpoly[a] | |
for i in range(a)] | |
y1 = y0[:min(len(y0), a)] | |
for _ in range(n - a): | |
sol = 0 | |
for a, b in zip(y1, list_red): | |
r = DMFsubs(b, Holonomic.x0) | |
if not getattr(r, 'is_finite', True): | |
return y0 | |
if isinstance(r, (PolyElement, FracElement)): | |
r = r.as_expr() | |
sol += a * r | |
y1.append(sol) | |
list_red = _derivate_diff_eq(list_red, K) | |
return y0 + y1[len(y0):] | |
def DMFdiff(frac, K): | |
# differentiate a DMF object represented as p/q | |
if not isinstance(frac, DMF): | |
return frac.diff() | |
p = K.numer(frac) | |
q = K.denom(frac) | |
sol_num = - p * q.diff() + q * p.diff() | |
sol_denom = q**2 | |
return K((sol_num.to_list(), sol_denom.to_list())) | |
def DMFsubs(frac, x0, mpm=False): | |
# substitute the point x0 in DMF object of the form p/q | |
if not isinstance(frac, DMF): | |
return frac | |
p = frac.num | |
q = frac.den | |
sol_p = S.Zero | |
sol_q = S.Zero | |
if mpm: | |
from mpmath import mp | |
for i, j in enumerate(reversed(p)): | |
if mpm: | |
j = sympify(j)._to_mpmath(mp.prec) | |
sol_p += j * x0**i | |
for i, j in enumerate(reversed(q)): | |
if mpm: | |
j = sympify(j)._to_mpmath(mp.prec) | |
sol_q += j * x0**i | |
if isinstance(sol_p, (PolyElement, FracElement)): | |
sol_p = sol_p.as_expr() | |
if isinstance(sol_q, (PolyElement, FracElement)): | |
sol_q = sol_q.as_expr() | |
return sol_p / sol_q | |
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): | |
""" | |
Converts polynomials, rationals and algebraic functions to holonomic. | |
""" | |
ispoly = func.is_polynomial() | |
if not ispoly: | |
israt = func.is_rational_function() | |
else: | |
israt = True | |
if not (ispoly or israt): | |
basepoly, ratexp = func.as_base_exp() | |
if basepoly.is_polynomial() and ratexp.is_Number: | |
if isinstance(ratexp, Float): | |
ratexp = nsimplify(ratexp) | |
m, n = ratexp.p, ratexp.q | |
is_alg = True | |
else: | |
is_alg = False | |
else: | |
is_alg = True | |
if not (ispoly or israt or is_alg): | |
return None | |
R = domain.old_poly_ring(x) | |
_, Dx = DifferentialOperators(R, 'Dx') | |
# if the function is constant | |
if not func.has(x): | |
return HolonomicFunction(Dx, x, 0, [func]) | |
if ispoly: | |
# differential equation satisfied by polynomial | |
sol = func * Dx - func.diff(x) | |
sol = _normalize(sol.listofpoly, sol.parent, negative=False) | |
is_singular = sol.is_singular(x0) | |
# try to compute the conditions for singular points | |
if y0 is None and x0 == 0 and is_singular: | |
rep = R.from_sympy(func).to_list() | |
for i, j in enumerate(reversed(rep)): | |
if j == 0: | |
continue | |
coeff = list(reversed(rep))[i:] | |
indicial = i | |
break | |
for i, j in enumerate(coeff): | |
if isinstance(j, (PolyElement, FracElement)): | |
coeff[i] = j.as_expr() | |
y0 = {indicial: S(coeff)} | |
elif israt: | |
p, q = func.as_numer_denom() | |
# differential equation satisfied by rational | |
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) | |
sol = _normalize(sol.listofpoly, sol.parent, negative=False) | |
elif is_alg: | |
sol = n * (x / m) * Dx - 1 | |
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator | |
is_singular = sol.is_singular(x0) | |
# try to compute the conditions for singular points | |
if y0 is None and x0 == 0 and is_singular and \ | |
(lenics is None or lenics <= 1): | |
rep = R.from_sympy(basepoly).to_list() | |
for i, j in enumerate(reversed(rep)): | |
if j == 0: | |
continue | |
if isinstance(j, (PolyElement, FracElement)): | |
j = j.as_expr() | |
coeff = S(j)**ratexp | |
indicial = S(i) * ratexp | |
break | |
if isinstance(coeff, (PolyElement, FracElement)): | |
coeff = coeff.as_expr() | |
y0 = {indicial: S([coeff])} | |
if y0 or not initcond: | |
return HolonomicFunction(sol, x, x0, y0) | |
if not lenics: | |
lenics = sol.order | |
if sol.is_singular(x0): | |
r = HolonomicFunction(sol, x, x0)._indicial() | |
l = list(r) | |
if len(r) == 1 and r[l[0]] == S.One: | |
r = l[0] | |
g = func / (x - x0)**r | |
singular_ics = _find_conditions(g, x, x0, lenics) | |
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] | |
y0 = {r:singular_ics} | |
return HolonomicFunction(sol, x, x0, y0) | |
y0 = _find_conditions(func, x, x0, lenics) | |
while not y0: | |
x0 += 1 | |
y0 = _find_conditions(func, x, x0, lenics) | |
return HolonomicFunction(sol, x, x0, y0) | |
def _convert_meijerint(func, x, initcond=True, domain=QQ): | |
args = meijerint._rewrite1(func, x) | |
if args: | |
fac, po, g, _ = args | |
else: | |
return None | |
# lists for sum of meijerg functions | |
fac_list = [fac * i[0] for i in g] | |
t = po.as_base_exp() | |
s = t[1] if t[0] == x else S.Zero | |
po_list = [s + i[1] for i in g] | |
G_list = [i[2] for i in g] | |
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) | |
def _shift(func, s): | |
z = func.args[-1] | |
if z.has(I): | |
z = z.subs(exp_polar, exp) | |
d = z.collect(x, evaluate=False) | |
b = list(d)[0] | |
a = d[b] | |
t = b.as_base_exp() | |
b = t[1] if t[0] == x else S.Zero | |
r = s / b | |
an = (i + r for i in func.args[0][0]) | |
ap = (i + r for i in func.args[0][1]) | |
bm = (i + r for i in func.args[1][0]) | |
bq = (i + r for i in func.args[1][1]) | |
return a**-r, meijerg((an, ap), (bm, bq), z) | |
coeff, m = _shift(G_list[0], po_list[0]) | |
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) | |
# add all the meijerg functions after converting to holonomic | |
for i in range(1, len(G_list)): | |
coeff, m = _shift(G_list[i], po_list[i]) | |
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) | |
return sol | |
def _create_table(table, domain=QQ): | |
""" | |
Creates the look-up table. For a similar implementation | |
see meijerint._create_lookup_table. | |
""" | |
def add(formula, annihilator, arg, x0=0, y0=()): | |
""" | |
Adds a formula in the dictionary | |
""" | |
table.setdefault(_mytype(formula, x_1), []).append((formula, | |
HolonomicFunction(annihilator, arg, x0, y0))) | |
R = domain.old_poly_ring(x_1) | |
_, Dx = DifferentialOperators(R, 'Dx') | |
# add some basic functions | |
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) | |
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) | |
add(exp(x_1), Dx - 1, x_1, 0, 1) | |
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) | |
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) | |
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) | |
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) | |
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) | |
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) | |
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) | |
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) | |
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) | |
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) | |
def _find_conditions(func, x, x0, order): | |
y0 = [] | |
for i in range(order): | |
val = func.subs(x, x0) | |
if isinstance(val, NaN): | |
val = limit(func, x, x0) | |
if val.is_finite is False or isinstance(val, NaN): | |
return None | |
y0.append(val) | |
func = func.diff(x) | |
return y0 | |