File size: 92,513 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
"""
This module implements Holonomic Functions and
various operations on them.
"""

from sympy.core import Add, Mul, Pow
from sympy.core.numbers import (NaN, Infinity, NegativeInfinity, Float, I, pi,
        equal_valued, int_valued)
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
from sympy.functions.elementary.exponential import exp_polar, exp, log
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.polys.matrices import DomainMatrix
from sympy.printing import sstr
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.simplify import nsimplify
from sympy.solvers.solvers import solve

from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
    SingularityError, NotHolonomicError)


def _find_nonzero_solution(r, homosys):
    ones = lambda shape: DomainMatrix.ones(shape, r.domain)
    particular, nullspace = r._solve(homosys)
    nullity = nullspace.shape[0]
    nullpart = ones((1, nullity)) * nullspace
    sol = (particular + nullpart).transpose()
    return sol



def DifferentialOperators(base, generator):
    r"""
    This function is used to create annihilators using ``Dx``.

    Explanation
    ===========

    Returns an Algebra of Differential Operators also called Weyl Algebra
    and the operator for differentiation i.e. the ``Dx`` operator.

    Parameters
    ==========

    base:
        Base polynomial ring for the algebra.
        The base polynomial ring is the ring of polynomials in :math:`x` that
        will appear as coefficients in the operators.
    generator:
        Generator of the algebra which can
        be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".

    Examples
    ========

    >>> from sympy import ZZ
    >>> from sympy.abc import x
    >>> from sympy.holonomic.holonomic import DifferentialOperators
    >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    >>> R
    Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
    >>> Dx*x
    (1) + (x)*Dx
    """

    ring = DifferentialOperatorAlgebra(base, generator)
    return (ring, ring.derivative_operator)


class DifferentialOperatorAlgebra:
    r"""
    An Ore Algebra is a set of noncommutative polynomials in the
    intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
    It follows the commutation rule:

    .. math ::
       Dxa = \sigma(a)Dx + \delta(a)

    for :math:`a \subset A`.

    Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
    is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.

    If one takes the sigma as identity map and delta as the standard derivation
    then it becomes the algebra of Differential Operators also called
    a Weyl Algebra i.e. an algebra whose elements are Differential Operators.

    This class represents a Weyl Algebra and serves as the parent ring for
    Differential Operators.

    Examples
    ========

    >>> from sympy import ZZ
    >>> from sympy import symbols
    >>> from sympy.holonomic.holonomic import DifferentialOperators
    >>> x = symbols('x')
    >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    >>> R
    Univariate Differential Operator Algebra in intermediate Dx over the base ring
    ZZ[x]

    See Also
    ========

    DifferentialOperator
    """

    def __init__(self, base, generator):
        # the base polynomial ring for the algebra
        self.base = base
        # the operator representing differentiation i.e. `Dx`
        self.derivative_operator = DifferentialOperator(
            [base.zero, base.one], self)

        if generator is None:
            self.gen_symbol = Symbol('Dx', commutative=False)
        else:
            if isinstance(generator, str):
                self.gen_symbol = Symbol(generator, commutative=False)
            elif isinstance(generator, Symbol):
                self.gen_symbol = generator

    def __str__(self):
        string = 'Univariate Differential Operator Algebra in intermediate '\
            + sstr(self.gen_symbol) + ' over the base ring ' + \
            (self.base).__str__()

        return string

    __repr__ = __str__

    def __eq__(self, other):
        return self.base == other.base and \
               self.gen_symbol == other.gen_symbol


class DifferentialOperator:
    """
    Differential Operators are elements of Weyl Algebra. The Operators
    are defined by a list of polynomials in the base ring and the
    parent ring of the Operator i.e. the algebra it belongs to.

    Explanation
    ===========

    Takes a list of polynomials for each power of ``Dx`` and the
    parent ring which must be an instance of DifferentialOperatorAlgebra.

    A Differential Operator can be created easily using
    the operator ``Dx``. See examples below.

    Examples
    ========

    >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
    >>> from sympy import ZZ
    >>> from sympy import symbols
    >>> x = symbols('x')
    >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')

    >>> DifferentialOperator([0, 1, x**2], R)
    (1)*Dx + (x**2)*Dx**2

    >>> (x*Dx*x + 1 - Dx**2)**2
    (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4

    See Also
    ========

    DifferentialOperatorAlgebra
    """

    _op_priority = 20

    def __init__(self, list_of_poly, parent):
        """
        Parameters
        ==========

        list_of_poly:
            List of polynomials belonging to the base ring of the algebra.
        parent:
            Parent algebra of the operator.
        """

        # the parent ring for this operator
        # must be an DifferentialOperatorAlgebra object
        self.parent = parent
        base = self.parent.base
        self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
        # sequence of polynomials in x for each power of Dx
        # the list should not have trailing zeroes
        # represents the operator
        # convert the expressions into ring elements using from_sympy
        for i, j in enumerate(list_of_poly):
            if not isinstance(j, base.dtype):
                list_of_poly[i] = base.from_sympy(sympify(j))
            else:
                list_of_poly[i] = base.from_sympy(base.to_sympy(j))

        self.listofpoly = list_of_poly
        # highest power of `Dx`
        self.order = len(self.listofpoly) - 1

    def __mul__(self, other):
        """
        Multiplies two DifferentialOperator and returns another
        DifferentialOperator instance using the commutation rule
        Dx*a = a*Dx + a'
        """

        listofself = self.listofpoly
        if isinstance(other, DifferentialOperator):
            listofother = other.listofpoly
        elif isinstance(other, self.parent.base.dtype):
            listofother = [other]
        else:
            listofother = [self.parent.base.from_sympy(sympify(other))]

        # multiplies a polynomial `b` with a list of polynomials
        def _mul_dmp_diffop(b, listofother):
            if isinstance(listofother, list):
                return [i * b for i in listofother]
            return [b * listofother]

        sol = _mul_dmp_diffop(listofself[0], listofother)

        # compute Dx^i * b
        def _mul_Dxi_b(b):
            sol1 = [self.parent.base.zero]
            sol2 = []

            if isinstance(b, list):
                for i in b:
                    sol1.append(i)
                    sol2.append(i.diff())
            else:
                sol1.append(self.parent.base.from_sympy(b))
                sol2.append(self.parent.base.from_sympy(b).diff())

            return _add_lists(sol1, sol2)

        for i in range(1, len(listofself)):
            # find Dx^i * b in ith iteration
            listofother = _mul_Dxi_b(listofother)
            # solution = solution + listofself[i] * (Dx^i * b)
            sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))

        return DifferentialOperator(sol, self.parent)

    def __rmul__(self, other):
        if not isinstance(other, DifferentialOperator):

            if not isinstance(other, self.parent.base.dtype):
                other = (self.parent.base).from_sympy(sympify(other))

            sol = [other * j for j in self.listofpoly]
            return DifferentialOperator(sol, self.parent)

    def __add__(self, other):
        if isinstance(other, DifferentialOperator):

            sol = _add_lists(self.listofpoly, other.listofpoly)
            return DifferentialOperator(sol, self.parent)

        list_self = self.listofpoly
        if not isinstance(other, self.parent.base.dtype):
            list_other = [((self.parent).base).from_sympy(sympify(other))]
        else:
            list_other = [other]
        sol = [list_self[0] + list_other[0]] + list_self[1:]
        return DifferentialOperator(sol, self.parent)

    __radd__ = __add__

    def __sub__(self, other):
        return self + (-1) * other

    def __rsub__(self, other):
        return (-1) * self + other

    def __neg__(self):
        return -1 * self

    def __truediv__(self, other):
        return self * (S.One / other)

    def __pow__(self, n):
        if n == 1:
            return self
        result = DifferentialOperator([self.parent.base.one], self.parent)
        if n == 0:
            return result
        # if self is `Dx`
        if self.listofpoly == self.parent.derivative_operator.listofpoly:
            sol = [self.parent.base.zero]*n + [self.parent.base.one]
            return DifferentialOperator(sol, self.parent)
        x = self
        while True:
            if n % 2:
                result *= x
            n >>= 1
            if not n:
                break
            x *= x
        return result

    def __str__(self):
        listofpoly = self.listofpoly
        print_str = ''

        for i, j in enumerate(listofpoly):
            if j == self.parent.base.zero:
                continue

            j = self.parent.base.to_sympy(j)

            if i == 0:
                print_str += '(' + sstr(j) + ')'
                continue

            if print_str:
                print_str += ' + '

            if i == 1:
                print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
                continue

            print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)

        return print_str

    __repr__ = __str__

    def __eq__(self, other):
        if isinstance(other, DifferentialOperator):
            return self.listofpoly == other.listofpoly and \
                   self.parent == other.parent
        return self.listofpoly[0] == other and \
            all(i is self.parent.base.zero for i in self.listofpoly[1:])

    def is_singular(self, x0):
        """
        Checks if the differential equation is singular at x0.
        """

        base = self.parent.base
        return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)


class HolonomicFunction:
    r"""
    A Holonomic Function is a solution to a linear homogeneous ordinary
    differential equation with polynomial coefficients. This differential
    equation can also be represented by an annihilator i.e. a Differential
    Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
    initial conditions can also be provided along with the annihilator.

    Explanation
    ===========

    Holonomic functions have closure properties and thus forms a ring.
    Given two Holonomic Functions f and g, their sum, product,
    integral and derivative is also a Holonomic Function.

    For ordinary points initial condition should be a vector of values of
    the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.

    For regular singular points initial conditions can also be provided in this
    format:
    :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
    where s0, s1, ... are the roots of indicial equation and vectors
    :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
    terms of the associated power series. See Examples below.

    Examples
    ========

    >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
    >>> from sympy import QQ
    >>> from sympy import symbols, S
    >>> x = symbols('x')
    >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')

    >>> p = HolonomicFunction(Dx - 1, x, 0, [1])  # e^x
    >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])  # sin(x)

    >>> p + q  # annihilator of e^x + sin(x)
    HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])

    >>> p * q  # annihilator of e^x * sin(x)
    HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])

    An example of initial conditions for regular singular points,
    the indicial equation has only one root `1/2`.

    >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
    HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})

    >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
    sqrt(x)

    To plot a Holonomic Function, one can use `.evalf()` for numerical
    computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.

    >>> import sympy.holonomic # doctest: +SKIP
    >>> from sympy import var, sin # doctest: +SKIP
    >>> import matplotlib.pyplot as plt # doctest: +SKIP
    >>> import numpy as np # doctest: +SKIP
    >>> var("x") # doctest: +SKIP
    >>> r = np.linspace(1, 5, 100) # doctest: +SKIP
    >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
    >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
    >>> plt.show() # doctest: +SKIP

    """

    _op_priority = 20

    def __init__(self, annihilator, x, x0=0, y0=None):
        """

        Parameters
        ==========

        annihilator:
            Annihilator of the Holonomic Function, represented by a
            `DifferentialOperator` object.
        x:
            Variable of the function.
        x0:
            The point at which initial conditions are stored.
            Generally an integer.
        y0:
            The initial condition. The proper format for the initial condition
            is described in class docstring. To make the function unique,
            length of the vector `y0` should be equal to or greater than the
            order of differential equation.
        """

        # initial condition
        self.y0 = y0
        # the point for initial conditions, default is zero.
        self.x0 = x0
        # differential operator L such that L.f = 0
        self.annihilator = annihilator
        self.x = x

    def __str__(self):
        if self._have_init_cond():
            str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
                sstr(self.x), sstr(self.x0), sstr(self.y0))
        else:
            str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
                sstr(self.x))

        return str_sol

    __repr__ = __str__

    def unify(self, other):
        """
        Unifies the base polynomial ring of a given two Holonomic
        Functions.
        """

        R1 = self.annihilator.parent.base
        R2 = other.annihilator.parent.base

        dom1 = R1.dom
        dom2 = R2.dom

        if R1 == R2:
            return (self, other)

        R = (dom1.unify(dom2)).old_poly_ring(self.x)

        newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))

        sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
        sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]

        sol1 = DifferentialOperator(sol1, newparent)
        sol2 = DifferentialOperator(sol2, newparent)

        sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
        sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)

        return (sol1, sol2)

    def is_singularics(self):
        """
        Returns True if the function have singular initial condition
        in the dictionary format.

        Returns False if the function have ordinary initial condition
        in the list format.

        Returns None for all other cases.
        """

        if isinstance(self.y0, dict):
            return True
        elif isinstance(self.y0, list):
            return False

    def _have_init_cond(self):
        """
        Checks if the function have initial condition.
        """
        return bool(self.y0)

    def _singularics_to_ord(self):
        """
        Converts a singular initial condition to ordinary if possible.
        """
        a = list(self.y0)[0]
        b = self.y0[a]

        if len(self.y0) == 1 and a == int(a) and a > 0:
            a = int(a)
            y0 = [S.Zero] * a
            y0 += [j * factorial(a + i) for i, j in enumerate(b)]

            return HolonomicFunction(self.annihilator, self.x, self.x0, y0)

    def __add__(self, other):
        # if the ground domains are different
        if self.annihilator.parent.base != other.annihilator.parent.base:
            a, b = self.unify(other)
            return a + b

        deg1 = self.annihilator.order
        deg2 = other.annihilator.order
        dim = max(deg1, deg2)
        R = self.annihilator.parent.base
        K = R.get_field()

        rowsself = [self.annihilator]
        rowsother = [other.annihilator]
        gen = self.annihilator.parent.derivative_operator

        # constructing annihilators up to order dim
        for i in range(dim - deg1):
            diff1 = (gen * rowsself[-1])
            rowsself.append(diff1)

        for i in range(dim - deg2):
            diff2 = (gen * rowsother[-1])
            rowsother.append(diff2)

        row = rowsself + rowsother

        # constructing the matrix of the ansatz
        r = []

        for expr in row:
            p = []
            for i in range(dim + 1):
                if i >= len(expr.listofpoly):
                    p.append(K.zero)
                else:
                    p.append(K.new(expr.listofpoly[i].to_list()))
            r.append(p)

        # solving the linear system using gauss jordan solver
        r = DomainMatrix(r, (len(row), dim+1), K).transpose()
        homosys = DomainMatrix.zeros((dim+1, 1), K)
        sol = _find_nonzero_solution(r, homosys)

        # if a solution is not obtained then increasing the order by 1 in each
        # iteration
        while sol.is_zero_matrix:
            dim += 1

            diff1 = (gen * rowsself[-1])
            rowsself.append(diff1)

            diff2 = (gen * rowsother[-1])
            rowsother.append(diff2)

            row = rowsself + rowsother
            r = []

            for expr in row:
                p = []
                for i in range(dim + 1):
                    if i >= len(expr.listofpoly):
                        p.append(K.zero)
                    else:
                        p.append(K.new(expr.listofpoly[i].to_list()))
                r.append(p)

            # solving the linear system using gauss jordan solver
            r = DomainMatrix(r, (len(row), dim+1), K).transpose()
            homosys = DomainMatrix.zeros((dim+1, 1), K)
            sol = _find_nonzero_solution(r, homosys)

        # taking only the coefficients needed to multiply with `self`
        # can be also be done the other way by taking R.H.S and multiplying with
        # `other`
        sol = sol.flat()[:dim + 1 - deg1]
        sol1 = _normalize(sol, self.annihilator.parent)
        # annihilator of the solution
        sol = sol1 * (self.annihilator)
        sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)

        if not (self._have_init_cond() and other._have_init_cond()):
            return HolonomicFunction(sol, self.x)

        # both the functions have ordinary initial conditions
        if self.is_singularics() == False and other.is_singularics() == False:

            # directly add the corresponding value
            if self.x0 == other.x0:
                # try to extended the initial conditions
                # using the annihilator
                y1 = _extend_y0(self, sol.order)
                y2 = _extend_y0(other, sol.order)
                y0 = [a + b for a, b in zip(y1, y2)]
                return HolonomicFunction(sol, self.x, self.x0, y0)

            # change the initial conditions to a same point
            selfat0 = self.annihilator.is_singular(0)
            otherat0 = other.annihilator.is_singular(0)
            if self.x0 == 0 and not selfat0 and not otherat0:
                return self + other.change_ics(0)
            if other.x0 == 0 and not selfat0 and not otherat0:
                return self.change_ics(0) + other

            selfatx0 = self.annihilator.is_singular(self.x0)
            otheratx0 = other.annihilator.is_singular(self.x0)
            if not selfatx0 and not otheratx0:
                return self + other.change_ics(self.x0)
            return self.change_ics(other.x0) + other

        if self.x0 != other.x0:
            return HolonomicFunction(sol, self.x)

        # if the functions have singular_ics
        y1 = None
        y2 = None

        if self.is_singularics() == False and other.is_singularics() == True:
            # convert the ordinary initial condition to singular.
            _y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
            y1 = {S.Zero: _y0}
            y2 = other.y0
        elif self.is_singularics() == True and other.is_singularics() == False:
            _y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
            y1 = self.y0
            y2 = {S.Zero: _y0}
        elif self.is_singularics() == True and other.is_singularics() == True:
            y1 = self.y0
            y2 = other.y0

        # computing singular initial condition for the result
        # taking union of the series terms of both functions
        y0 = {}
        for i in y1:
            # add corresponding initial terms if the power
            # on `x` is same
            if i in y2:
                y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
            else:
                y0[i] = y1[i]
        for i in y2:
            if i not in y1:
                y0[i] = y2[i]
        return HolonomicFunction(sol, self.x, self.x0, y0)

    def integrate(self, limits, initcond=False):
        """
        Integrates the given holonomic function.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import QQ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x))  # e^x - 1
        HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
        >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
        HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
        """

        # to get the annihilator, just multiply by Dx from right
        D = self.annihilator.parent.derivative_operator

        # if the function have initial conditions of the series format
        if self.is_singularics() == True:

            r = self._singularics_to_ord()
            if r:
                return r.integrate(limits, initcond=initcond)

            # computing singular initial condition for the function
            # produced after integration.
            y0 = {}
            for i in self.y0:
                c = self.y0[i]
                c2 = []
                for j, cj in enumerate(c):
                    if cj == 0:
                        c2.append(S.Zero)

                    # if power on `x` is -1, the integration becomes log(x)
                    # TODO: Implement this case
                    elif i + j + 1 == 0:
                        raise NotImplementedError("logarithmic terms in the series are not supported")
                    else:
                        c2.append(cj / S(i + j + 1))
                y0[i + 1] = c2

            if hasattr(limits, "__iter__"):
                raise NotImplementedError("Definite integration for singular initial conditions")

            return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)

        # if no initial conditions are available for the function
        if not self._have_init_cond():
            if initcond:
                return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
            return HolonomicFunction(self.annihilator * D, self.x)

        # definite integral
        # initial conditions for the answer will be stored at point `a`,
        # where `a` is the lower limit of the integrand
        if hasattr(limits, "__iter__"):

            if len(limits) == 3 and limits[0] == self.x:
                x0 = self.x0
                a = limits[1]
                b = limits[2]
                definite = True

        else:
            definite = False

        y0 = [S.Zero]
        y0 += self.y0

        indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)

        if not definite:
            return indefinite_integral

        # use evalf to get the values at `a`
        if x0 != a:
            try:
                indefinite_expr = indefinite_integral.to_expr()
            except (NotHyperSeriesError, NotPowerSeriesError):
                indefinite_expr = None

            if indefinite_expr:
                lower = indefinite_expr.subs(self.x, a)
                if isinstance(lower, NaN):
                    lower = indefinite_expr.limit(self.x, a)
            else:
                lower = indefinite_integral.evalf(a)

            if b == self.x:
                y0[0] = y0[0] - lower
                return HolonomicFunction(self.annihilator * D, self.x, x0, y0)

            elif S(b).is_Number:
                if indefinite_expr:
                    upper = indefinite_expr.subs(self.x, b)
                    if isinstance(upper, NaN):
                        upper = indefinite_expr.limit(self.x, b)
                else:
                    upper = indefinite_integral.evalf(b)

                return upper - lower


        # if the upper limit is `x`, the answer will be a function
        if b == self.x:
            return HolonomicFunction(self.annihilator * D, self.x, a, y0)

        # if the upper limits is a Number, a numerical value will be returned
        elif S(b).is_Number:
            try:
                s = HolonomicFunction(self.annihilator * D, self.x, a,\
                    y0).to_expr()
                indefinite = s.subs(self.x, b)
                if not isinstance(indefinite, NaN):
                    return indefinite
                else:
                    return s.limit(self.x, b)
            except (NotHyperSeriesError, NotPowerSeriesError):
                return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)

        return HolonomicFunction(self.annihilator * D, self.x)

    def diff(self, *args, **kwargs):
        r"""
        Differentiation of the given Holonomic function.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import ZZ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
        cos(x)
        >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
        2*exp(2*x)

        See Also
        ========

        integrate
        """
        kwargs.setdefault('evaluate', True)
        if args:
            if args[0] != self.x:
                return S.Zero
            elif len(args) == 2:
                sol = self
                for i in range(args[1]):
                    sol = sol.diff(args[0])
                return sol

        ann = self.annihilator

        # if the function is constant.
        if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
            return S.Zero

        # if the coefficient of y in the differential equation is zero.
        # a shifting is done to compute the answer in this case.
        elif ann.listofpoly[0] == ann.parent.base.zero:

            sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)

            if self._have_init_cond():
                # if ordinary initial condition
                if self.is_singularics() == False:
                    return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
                # TODO: support for singular initial condition
                return HolonomicFunction(sol, self.x)
            else:
                return HolonomicFunction(sol, self.x)

        # the general algorithm
        R = ann.parent.base
        K = R.get_field()

        seq_dmf = [K.new(i.to_list()) for i in ann.listofpoly]

        # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
        rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
        rhs.insert(0, K.zero)

        # differentiate both lhs and rhs
        sol = _derivate_diff_eq(rhs, K)

        # add the term y' in lhs to rhs
        sol = _add_lists(sol, [K.zero, K.one])

        sol = _normalize(sol[1:], self.annihilator.parent, negative=False)

        if not self._have_init_cond() or self.is_singularics() == True:
            return HolonomicFunction(sol, self.x)

        y0 = _extend_y0(self, sol.order + 1)[1:]
        return HolonomicFunction(sol, self.x, self.x0, y0)

    def __eq__(self, other):
        if self.annihilator != other.annihilator or self.x != other.x:
            return False
        if self._have_init_cond() and other._have_init_cond():
            return self.x0 == other.x0 and self.y0 == other.y0
        return True

    def __mul__(self, other):
        ann_self = self.annihilator

        if not isinstance(other, HolonomicFunction):
            other = sympify(other)

            if other.has(self.x):
                raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")

            if not self._have_init_cond():
                return self
            y0 = _extend_y0(self, ann_self.order)
            y1 = [(Poly.new(j, self.x) * other).rep for j in y0]
            return HolonomicFunction(ann_self, self.x, self.x0, y1)

        if self.annihilator.parent.base != other.annihilator.parent.base:
            a, b = self.unify(other)
            return a * b

        ann_other = other.annihilator

        a = ann_self.order
        b = ann_other.order

        R = ann_self.parent.base
        K = R.get_field()

        list_self = [K.new(j.to_list()) for j in ann_self.listofpoly]
        list_other = [K.new(j.to_list()) for j in ann_other.listofpoly]

        # will be used to reduce the degree
        self_red = [-list_self[i] / list_self[a] for i in range(a)]

        other_red = [-list_other[i] / list_other[b] for i in range(b)]

        # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
        coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)]
        coeff_mul[0][0] = K.one

        # making the ansatz
        lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
        lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose()

        homo_sys = DomainMatrix.zeros((a*b, 1), K)

        sol = _find_nonzero_solution(lin_sys, homo_sys)

        # until a non trivial solution is found
        while sol.is_zero_matrix:

            # updating the coefficients Dx^i(f).Dx^j(g) for next degree
            for i in range(a - 1, -1, -1):
                for j in range(b - 1, -1, -1):
                    coeff_mul[i][j + 1] += coeff_mul[i][j]
                    coeff_mul[i + 1][j] += coeff_mul[i][j]
                    if isinstance(coeff_mul[i][j], K.dtype):
                        coeff_mul[i][j] = DMFdiff(coeff_mul[i][j], K)
                    else:
                        coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)

            # reduce the terms to lower power using annihilators of f, g
            for i in range(a + 1):
                if coeff_mul[i][b].is_zero:
                    continue
                for j in range(b):
                    coeff_mul[i][j] += other_red[j] * coeff_mul[i][b]
                coeff_mul[i][b] = K.zero

            # not d2 + 1, as that is already covered in previous loop
            for j in range(b):
                if coeff_mul[a][j] == 0:
                    continue
                for i in range(a):
                    coeff_mul[i][j] += self_red[i] * coeff_mul[a][j]
                coeff_mul[a][j] = K.zero

            lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)])
            lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose()

            sol = _find_nonzero_solution(lin_sys, homo_sys)

        sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False)

        if not (self._have_init_cond() and other._have_init_cond()):
            return HolonomicFunction(sol_ann, self.x)

        if self.is_singularics() == False and other.is_singularics() == False:

            # if both the conditions are at same point
            if self.x0 == other.x0:

                # try to find more initial conditions
                y0_self = _extend_y0(self, sol_ann.order)
                y0_other = _extend_y0(other, sol_ann.order)
                # h(x0) = f(x0) * g(x0)
                y0 = [y0_self[0] * y0_other[0]]

                # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
                for i in range(1, min(len(y0_self), len(y0_other))):
                    coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
                    for j in range(i + 1):
                        for k in range(i + 1):
                            if j + k == i:
                                coeff[j][k] = binomial(i, j)

                    sol = 0
                    for j in range(i + 1):
                        for k in range(i + 1):
                            sol += coeff[j][k]* y0_self[j] * y0_other[k]

                    y0.append(sol)

                return HolonomicFunction(sol_ann, self.x, self.x0, y0)

            # if the points are different, consider one
            selfat0 = self.annihilator.is_singular(0)
            otherat0 = other.annihilator.is_singular(0)

            if self.x0 == 0 and not selfat0 and not otherat0:
                return self * other.change_ics(0)
            if other.x0 == 0 and not selfat0 and not otherat0:
                return self.change_ics(0) * other

            selfatx0 = self.annihilator.is_singular(self.x0)
            otheratx0 = other.annihilator.is_singular(self.x0)
            if not selfatx0 and not otheratx0:
                return self * other.change_ics(self.x0)
            return self.change_ics(other.x0) * other

        if self.x0 != other.x0:
            return HolonomicFunction(sol_ann, self.x)

        # if the functions have singular_ics
        y1 = None
        y2 = None

        if self.is_singularics() == False and other.is_singularics() == True:
            _y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
            y1 = {S.Zero: _y0}
            y2 = other.y0
        elif self.is_singularics() == True and other.is_singularics() == False:
            _y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
            y1 = self.y0
            y2 = {S.Zero: _y0}
        elif self.is_singularics() == True and other.is_singularics() == True:
            y1 = self.y0
            y2 = other.y0

        y0 = {}
        # multiply every possible pair of the series terms
        for i in y1:
            for j in y2:
                k = min(len(y1[i]), len(y2[j]))
                c = [sum((y1[i][b] * y2[j][a - b] for b in range(a + 1)),
                         start=S.Zero) for a in range(k)]
                if not i + j in y0:
                    y0[i + j] = c
                else:
                    y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
        return HolonomicFunction(sol_ann, self.x, self.x0, y0)

    __rmul__ = __mul__

    def __sub__(self, other):
        return self + other * -1

    def __rsub__(self, other):
        return self * -1 + other

    def __neg__(self):
        return -1 * self

    def __truediv__(self, other):
        return self * (S.One / other)

    def __pow__(self, n):
        if self.annihilator.order <= 1:
            ann = self.annihilator
            parent = ann.parent

            if self.y0 is None:
                y0 = None
            else:
                y0 = [list(self.y0)[0] ** n]

            p0 = ann.listofpoly[0]
            p1 = ann.listofpoly[1]

            p0 = (Poly.new(p0, self.x) * n).rep

            sol = [parent.base.to_sympy(i) for i in [p0, p1]]
            dd = DifferentialOperator(sol, parent)
            return HolonomicFunction(dd, self.x, self.x0, y0)
        if n < 0:
            raise NotHolonomicError("Negative Power on a Holonomic Function")
        Dx = self.annihilator.parent.derivative_operator
        result = HolonomicFunction(Dx, self.x, S.Zero, [S.One])
        if n == 0:
            return result
        x = self
        while True:
            if n % 2:
                result *= x
            n >>= 1
            if not n:
                break
            x *= x
        return result

    def degree(self):
        """
        Returns the highest power of `x` in the annihilator.
        """
        return max(i.degree() for i in self.annihilator.listofpoly)

    def composition(self, expr, *args, **kwargs):
        """
        Returns function after composition of a holonomic
        function with an algebraic function. The method cannot compute
        initial conditions for the result by itself, so they can be also be
        provided.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import QQ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1])  # e^(x**2)
        HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
        >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
        HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])

        See Also
        ========

        from_hyper
        """

        R = self.annihilator.parent
        a = self.annihilator.order
        diff = expr.diff(self.x)
        listofpoly = self.annihilator.listofpoly

        for i, j in enumerate(listofpoly):
            if isinstance(j, self.annihilator.parent.base.dtype):
                listofpoly[i] = self.annihilator.parent.base.to_sympy(j)

        r = listofpoly[a].subs({self.x:expr})
        subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
        coeffs = [S.Zero for i in range(a)]  # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
        coeffs[0] = S.One
        system = [coeffs]
        homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
        while True:
            coeffs_next = [p.diff(self.x) for p in coeffs]
            for i in range(a - 1):
                coeffs_next[i + 1] += (coeffs[i] * diff)
            for i in range(a):
                coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
            coeffs = coeffs_next
            # check for linear relations
            system.append(coeffs)
            sol, taus = (Matrix(system).transpose()
                ).gauss_jordan_solve(homogeneous)
            if sol.is_zero_matrix is not True:
                break

        tau = list(taus)[0]
        sol = sol.subs(tau, 1)
        sol = _normalize(sol[0:], R, negative=False)

        # if initial conditions are given for the resulting function
        if args:
            return HolonomicFunction(sol, self.x, args[0], args[1])
        return HolonomicFunction(sol, self.x)

    def to_sequence(self, lb=True):
        r"""
        Finds recurrence relation for the coefficients in the series expansion
        of the function about :math:`x_0`, where :math:`x_0` is the point at
        which the initial condition is stored.

        Explanation
        ===========

        If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
        is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
        smallest ``n`` for which the recurrence holds true.

        If the point :math:`x_0` is regular singular, a list of solutions in
        the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
        Each tuple in this vector represents a recurrence relation :math:`R`
        associated with a root of the indicial equation ``p``. Conditions of
        a different format can also be provided in this case, see the
        docstring of HolonomicFunction class.

        If it's not possible to numerically compute a initial condition,
        it is returned as a symbol :math:`C_j`, denoting the coefficient of
        :math:`(x - x_0)^j` in the power series about :math:`x_0`.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import QQ
        >>> from sympy import symbols, S
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
        [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
        >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
        [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
        >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
        [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]

        See Also
        ========

        HolonomicFunction.series

        References
        ==========

        .. [1] https://hal.inria.fr/inria-00070025/document
        .. [2] https://www3.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf

        """

        if self.x0 != 0:
            return self.shift_x(self.x0).to_sequence()

        # check whether a power series exists if the point is singular
        if self.annihilator.is_singular(self.x0):
            return self._frobenius(lb=lb)

        dict1 = {}
        n = Symbol('n', integer=True)
        dom = self.annihilator.parent.base.dom
        R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')

        # substituting each term of the form `x^k Dx^j` in the
        # annihilator, according to the formula below:
        # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
        # for explanation see [2].
        for i, j in enumerate(self.annihilator.listofpoly):

            listofdmp = j.all_coeffs()
            degree = len(listofdmp) - 1

            for k in range(degree + 1):
                coeff = listofdmp[degree - k]

                if coeff == 0:
                    continue

                if (i - k, k) in dict1:
                    dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
                else:
                    dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))


        sol = []
        keylist = [i[0] for i in dict1]
        lower = min(keylist)
        upper = max(keylist)
        degree = self.degree()

        # the recurrence relation holds for all values of
        # n greater than smallest_n, i.e. n >= smallest_n
        smallest_n = lower + degree
        dummys = {}
        eqs = []
        unknowns = []

        # an appropriate shift of the recurrence
        for j in range(lower, upper + 1):
            if j in keylist:
                temp = sum((v.subs(n, n - lower)
                           for k, v in dict1.items() if k[0] == j),
                           start=S.Zero)
                sol.append(temp)
            else:
                sol.append(S.Zero)

        # the recurrence relation
        sol = RecurrenceOperator(sol, R)

        # computing the initial conditions for recurrence
        order = sol.order
        all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
        all_roots = all_roots.keys()

        if all_roots:
            max_root = max(all_roots) + 1
            smallest_n = max(max_root, smallest_n)
        order += smallest_n

        y0 = _extend_y0(self, order)
        # u(n) = y^n(0)/factorial(n)
        u0 = [j / factorial(i) for i, j in enumerate(y0)]

        # if sufficient conditions can't be computed then
        # try to use the series method i.e.
        # equate the coefficients of x^k in the equation formed by
        # substituting the series in differential equation, to zero.
        if len(u0) < order:

            for i in range(degree):
                eq = S.Zero

                for j in dict1:

                    if i + j[0] < 0:
                        dummys[i + j[0]] = S.Zero

                    elif i + j[0] < len(u0):
                        dummys[i + j[0]] = u0[i + j[0]]

                    elif not i + j[0] in dummys:
                        dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
                        unknowns.append(dummys[i + j[0]])

                    if j[1] <= i:
                        eq += dict1[j].subs(n, i) * dummys[i + j[0]]

                eqs.append(eq)

            # solve the system of equations formed
            soleqs = solve(eqs, *unknowns)

            if isinstance(soleqs, dict):

                for i in range(len(u0), order):

                    if i not in dummys:
                        dummys[i] = Symbol('C_%s' %i)

                    if dummys[i] in soleqs:
                        u0.append(soleqs[dummys[i]])

                    else:
                        u0.append(dummys[i])

                if lb:
                    return [(HolonomicSequence(sol, u0), smallest_n)]
                return [HolonomicSequence(sol, u0)]

            for i in range(len(u0), order):

                if i not in dummys:
                    dummys[i] = Symbol('C_%s' %i)

                s = False
                for j in soleqs:
                    if dummys[i] in j:
                        u0.append(j[dummys[i]])
                        s = True
                if not s:
                    u0.append(dummys[i])

        if lb:
            return [(HolonomicSequence(sol, u0), smallest_n)]

        return [HolonomicSequence(sol, u0)]

    def _frobenius(self, lb=True):
        # compute the roots of indicial equation
        indicialroots = self._indicial()

        reals = []
        compl = []
        for i in ordered(indicialroots.keys()):
            if i.is_real:
                reals.extend([i] * indicialroots[i])
            else:
                a, b = i.as_real_imag()
                compl.extend([(i, a, b)] * indicialroots[i])

        # sort the roots for a fixed ordering of solution
        compl.sort(key=lambda x : x[1])
        compl.sort(key=lambda x : x[2])
        reals.sort()

        # grouping the roots, roots differ by an integer are put in the same group.
        grp = []

        for i in reals:
            if len(grp) == 0:
                grp.append([i])
                continue
            for j in grp:
                if int_valued(j[0] - i):
                    j.append(i)
                    break
            else:
                grp.append([i])

        # True if none of the roots differ by an integer i.e.
        # each element in group have only one member
        independent = all(len(i) == 1 for i in grp)

        allpos = all(i >= 0 for i in reals)
        allint = all(int_valued(i) for i in reals)

        # if initial conditions are provided
        # then use them.
        if self.is_singularics() == True:
            rootstoconsider = []
            for i in ordered(self.y0.keys()):
                for j in ordered(indicialroots.keys()):
                    if equal_valued(j, i):
                        rootstoconsider.append(i)

        elif allpos and allint:
            rootstoconsider = [min(reals)]

        elif independent:
            rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]

        elif not allint:
            rootstoconsider = [i for i in reals if not int(i) == i]

        elif not allpos:

            if not self._have_init_cond() or S(self.y0[0]).is_finite ==  False:
                rootstoconsider = [min(reals)]

            else:
                posroots = [i for i in reals if i >= 0]
                rootstoconsider = [min(posroots)]

        n = Symbol('n', integer=True)
        dom = self.annihilator.parent.base.dom
        R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')

        finalsol = []
        char = ord('C')

        for p in rootstoconsider:
            dict1 = {}

            for i, j in enumerate(self.annihilator.listofpoly):

                listofdmp = j.all_coeffs()
                degree = len(listofdmp) - 1

                for k in range(degree + 1):
                    coeff = listofdmp[degree - k]

                    if coeff == 0:
                        continue

                    if (i - k, k - i) in dict1:
                        dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
                    else:
                        dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))

            sol = []
            keylist = [i[0] for i in dict1]
            lower = min(keylist)
            upper = max(keylist)
            degree = max(i[1] for i in dict1)
            degree2 = min(i[1] for i in dict1)

            smallest_n = lower + degree
            dummys = {}
            eqs = []
            unknowns = []

            for j in range(lower, upper + 1):
                if j in keylist:
                    temp = sum((v.subs(n, n - lower)
                               for k, v in dict1.items() if k[0] == j),
                               start=S.Zero)
                    sol.append(temp)
                else:
                    sol.append(S.Zero)

            # the recurrence relation
            sol = RecurrenceOperator(sol, R)

            # computing the initial conditions for recurrence
            order = sol.order
            all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
            all_roots = all_roots.keys()

            if all_roots:
                max_root = max(all_roots) + 1
                smallest_n = max(max_root, smallest_n)
            order += smallest_n

            u0 = []

            if self.is_singularics() == True:
                u0 = self.y0[p]

            elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
                y0 = _extend_y0(self, order + int(p))
                # u(n) = y^n(0)/factorial(n)
                if len(y0) > int(p):
                    u0 = [y0[i] / factorial(i) for i in range(int(p), len(y0))]

            if len(u0) < order:

                for i in range(degree2, degree):
                    eq = S.Zero

                    for j in dict1:
                        if i + j[0] < 0:
                            dummys[i + j[0]] = S.Zero

                        elif i + j[0] < len(u0):
                            dummys[i + j[0]] = u0[i + j[0]]

                        elif not i + j[0] in dummys:
                            letter = chr(char) + '_%s' %(i + j[0])
                            dummys[i + j[0]] = Symbol(letter)
                            unknowns.append(dummys[i + j[0]])

                        if j[1] <= i:
                            eq += dict1[j].subs(n, i) * dummys[i + j[0]]

                    eqs.append(eq)

                # solve the system of equations formed
                soleqs = solve(eqs, *unknowns)

                if isinstance(soleqs, dict):

                    for i in range(len(u0), order):

                        if i not in dummys:
                            letter = chr(char) + '_%s' %i
                            dummys[i] = Symbol(letter)

                        if dummys[i] in soleqs:
                            u0.append(soleqs[dummys[i]])

                        else:
                            u0.append(dummys[i])

                    if lb:
                        finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
                        continue
                    else:
                        finalsol.append((HolonomicSequence(sol, u0), p))
                        continue

                for i in range(len(u0), order):

                    if i not in dummys:
                        letter = chr(char) + '_%s' %i
                        dummys[i] = Symbol(letter)

                    s = False
                    for j in soleqs:
                        if dummys[i] in j:
                            u0.append(j[dummys[i]])
                            s = True
                    if not s:
                        u0.append(dummys[i])
            if lb:
                finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))

            else:
                finalsol.append((HolonomicSequence(sol, u0), p))
            char += 1
        return finalsol

    def series(self, n=6, coefficient=False, order=True, _recur=None):
        r"""
        Finds the power series expansion of given holonomic function about :math:`x_0`.

        Explanation
        ===========

        A list of series might be returned if :math:`x_0` is a regular point with
        multiple roots of the indicial equation.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import QQ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(Dx - 1, x, 0, [1]).series()  # e^x
        1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
        >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8)  # sin(x)
        x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)

        See Also
        ========

        HolonomicFunction.to_sequence
        """

        if _recur is None:
            recurrence = self.to_sequence()
        else:
            recurrence = _recur

        if isinstance(recurrence, tuple) and len(recurrence) == 2:
            recurrence = recurrence[0]
            constantpower = 0
        elif isinstance(recurrence, tuple) and len(recurrence) == 3:
            constantpower = recurrence[1]
            recurrence = recurrence[0]

        elif len(recurrence) == 1 and len(recurrence[0]) == 2:
            recurrence = recurrence[0][0]
            constantpower = 0
        elif len(recurrence) == 1 and len(recurrence[0]) == 3:
            constantpower = recurrence[0][1]
            recurrence = recurrence[0][0]
        else:
            return [self.series(_recur=i) for i in recurrence]

        n = n - int(constantpower)
        l = len(recurrence.u0) - 1
        k = recurrence.recurrence.order
        x = self.x
        x0 = self.x0
        seq_dmp = recurrence.recurrence.listofpoly
        R = recurrence.recurrence.parent.base
        K = R.get_field()
        seq = [K.new(j.to_list()) for j in seq_dmp]
        sub = [-seq[i] / seq[k] for i in range(k)]
        sol = list(recurrence.u0)

        if l + 1 < n:
            # use the initial conditions to find the next term
            for i in range(l + 1 - k, n - k):
                coeff = sum((DMFsubs(sub[j], i) * sol[i + j]
                            for j in range(k) if i + j >= 0), start=S.Zero)
                sol.append(coeff)

        if coefficient:
            return sol

        ser = sum((x**(i + constantpower) * j for i, j in enumerate(sol)),
                  start=S.Zero)
        if order:
            ser += Order(x**(n + int(constantpower)), x)
        if x0 != 0:
            return ser.subs(x, x - x0)
        return ser

    def _indicial(self):
        """
        Computes roots of the Indicial equation.
        """

        if self.x0 != 0:
            return self.shift_x(self.x0)._indicial()

        list_coeff = self.annihilator.listofpoly
        R = self.annihilator.parent.base
        x = self.x
        s = R.zero
        y = R.one

        def _pole_degree(poly):
            root_all = roots(R.to_sympy(poly), x, filter='Z')
            if 0 in root_all.keys():
                return root_all[0]
            else:
                return 0

        degree = max(j.degree() for j in list_coeff)
        inf = 10 * (max(1, degree) + max(1, self.annihilator.order))

        deg = lambda q: inf if q.is_zero else _pole_degree(q)
        b = min(deg(q) - j for j, q in enumerate(list_coeff))

        for i, j in enumerate(list_coeff):
            listofdmp = j.all_coeffs()
            degree = len(listofdmp) - 1
            if 0 <= i + b <= degree:
                s = s + listofdmp[degree - i - b] * y
            y *= R.from_sympy(x - i)

        return roots(R.to_sympy(s), x)

    def evalf(self, points, method='RK4', h=0.05, derivatives=False):
        r"""
        Finds numerical value of a holonomic function using numerical methods.
        (RK4 by default). A set of points (real or complex) must be provided
        which will be the path for the numerical integration.

        Explanation
        ===========

        The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical
        values will be computed at each point in this order
        :math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`.

        Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import QQ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')

        A straight line on the real axis from (0 to 1)

        >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

        Runge-Kutta 4th order on e^x from 0.1 to 1.
        Exact solution at 1 is 2.71828182845905

        >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
        [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
        1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
        2.45960141378007, 2.71827974413517]

        Euler's method for the same

        >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
        [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
        2.357947691, 2.5937424601]

        One can also observe that the value obtained using Runge-Kutta 4th order
        is much more accurate than Euler's method.
        """

        from sympy.holonomic.numerical import _evalf
        lp = False

        # if a point `b` is given instead of a mesh
        if not hasattr(points, "__iter__"):
            lp = True
            b = S(points)
            if self.x0 == b:
                return _evalf(self, [b], method=method, derivatives=derivatives)[-1]

            if not b.is_Number:
                raise NotImplementedError

            a = self.x0
            if a > b:
                h = -h
            n = int((b - a) / h)
            points = [a + h]
            for i in range(n - 1):
                points.append(points[-1] + h)

        for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
            if i == self.x0 or i in points:
                raise SingularityError(self, i)

        if lp:
            return _evalf(self, points, method=method, derivatives=derivatives)[-1]
        return _evalf(self, points, method=method, derivatives=derivatives)

    def change_x(self, z):
        """
        Changes only the variable of Holonomic Function, for internal
        purposes. For composition use HolonomicFunction.composition()
        """

        dom = self.annihilator.parent.base.dom
        R = dom.old_poly_ring(z)
        parent, _ = DifferentialOperators(R, 'Dx')
        sol = [R(j.to_list()) for j in self.annihilator.listofpoly]
        sol =  DifferentialOperator(sol, parent)
        return HolonomicFunction(sol, z, self.x0, self.y0)

    def shift_x(self, a):
        """
        Substitute `x + a` for `x`.
        """

        x = self.x
        listaftershift = self.annihilator.listofpoly
        base = self.annihilator.parent.base

        sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
        sol = DifferentialOperator(sol, self.annihilator.parent)
        x0 = self.x0 - a
        if not self._have_init_cond():
            return HolonomicFunction(sol, x)
        return HolonomicFunction(sol, x, x0, self.y0)

    def to_hyper(self, as_list=False, _recur=None):
        r"""
        Returns a hypergeometric function (or linear combination of them)
        representing the given holonomic function.

        Explanation
        ===========

        Returns an answer of the form:
        `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots`

        This is very useful as one can now use ``hyperexpand`` to find the
        symbolic expressions/functions.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import ZZ
        >>> from sympy import symbols
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
        >>> # sin(x)
        >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
        x*hyper((), (3/2,), -x**2/4)
        >>> # exp(x)
        >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
        hyper((), (), x)

        See Also
        ========

        from_hyper, from_meijerg
        """

        if _recur is None:
            recurrence = self.to_sequence()
        else:
            recurrence = _recur

        if isinstance(recurrence, tuple) and len(recurrence) == 2:
            smallest_n = recurrence[1]
            recurrence = recurrence[0]
            constantpower = 0
        elif isinstance(recurrence, tuple) and len(recurrence) == 3:
            smallest_n = recurrence[2]
            constantpower = recurrence[1]
            recurrence = recurrence[0]
        elif len(recurrence) == 1 and len(recurrence[0]) == 2:
            smallest_n = recurrence[0][1]
            recurrence = recurrence[0][0]
            constantpower = 0
        elif len(recurrence) == 1 and len(recurrence[0]) == 3:
            smallest_n = recurrence[0][2]
            constantpower = recurrence[0][1]
            recurrence = recurrence[0][0]
        else:
            sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
            for i in recurrence[1:]:
                sol += self.to_hyper(as_list=as_list, _recur=i)
            return sol

        u0 = recurrence.u0
        r = recurrence.recurrence
        x = self.x
        x0 = self.x0

        # order of the recurrence relation
        m = r.order

        # when no recurrence exists, and the power series have finite terms
        if m == 0:
            nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')

            sol = S.Zero
            for j, i in enumerate(nonzeroterms):

                if i < 0 or not int_valued(i):
                    continue

                i = int(i)
                if i < len(u0):
                    if isinstance(u0[i], (PolyElement, FracElement)):
                        u0[i] = u0[i].as_expr()
                    sol += u0[i] * x**i

                else:
                    sol += Symbol('C_%s' %j) * x**i

            if isinstance(sol, (PolyElement, FracElement)):
                sol = sol.as_expr() * x**constantpower
            else:
                sol = sol * x**constantpower
            if as_list:
                if x0 != 0:
                    return [(sol.subs(x, x - x0), )]
                return [(sol, )]
            if x0 != 0:
                return sol.subs(x, x - x0)
            return sol

        if smallest_n + m > len(u0):
            raise NotImplementedError("Can't compute sufficient Initial Conditions")

        # check if the recurrence represents a hypergeometric series
        if any(i != r.parent.base.zero for i in r.listofpoly[1:-1]):
            raise NotHyperSeriesError(self, self.x0)

        a = r.listofpoly[0]
        b = r.listofpoly[-1]

        # the constant multiple of argument of hypergeometric function
        if isinstance(a.LC(), (PolyElement, FracElement)):
            c = - (S(a.LC().as_expr()) * m**(a.degree())) / (S(b.LC().as_expr()) * m**(b.degree()))
        else:
            c = - (S(a.LC()) * m**(a.degree())) / (S(b.LC()) * m**(b.degree()))

        sol = 0

        arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
        arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)

        # iterate through the initial conditions to find
        # the hypergeometric representation of the given
        # function.
        # The answer will be a linear combination
        # of different hypergeometric series which satisfies
        # the recurrence.
        if as_list:
            listofsol = []
        for i in range(smallest_n + m):

            # if the recurrence relation doesn't hold for `n = i`,
            # then a Hypergeometric representation doesn't exist.
            # add the algebraic term a * x**i to the solution,
            # where a is u0[i]
            if i < smallest_n:
                if as_list:
                    listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
                else:
                    sol += S(u0[i]) * x**i
                continue

            # if the coefficient u0[i] is zero, then the
            # independent hypergeomtric series starting with
            # x**i is not a part of the answer.
            if S(u0[i]) == 0:
                continue

            ap = []
            bq = []

            # substitute m * n + i for n
            for k in ordered(arg1.keys()):
                ap.extend([nsimplify((i - k) / m)] * arg1[k])

            for k in ordered(arg2.keys()):
                bq.extend([nsimplify((i - k) / m)] * arg2[k])

            # convention of (k + 1) in the denominator
            if 1 in bq:
                bq.remove(1)
            else:
                ap.append(1)
            if as_list:
                listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
            else:
                sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
        if as_list:
            return listofsol
        sol = sol * x**constantpower
        if x0 != 0:
            return sol.subs(x, x - x0)

        return sol

    def to_expr(self):
        """
        Converts a Holonomic Function back to elementary functions.

        Examples
        ========

        >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
        >>> from sympy import ZZ
        >>> from sympy import symbols, S
        >>> x = symbols('x')
        >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
        >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
        besselj(1, x)
        >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
        x*log(x + 1) + log(x + 1) + 1

        """

        return hyperexpand(self.to_hyper()).simplify()

    def change_ics(self, b, lenics=None):
        """
        Changes the point `x0` to ``b`` for initial conditions.

        Examples
        ========

        >>> from sympy.holonomic import expr_to_holonomic
        >>> from sympy import symbols, sin, exp
        >>> x = symbols('x')

        >>> expr_to_holonomic(sin(x)).change_ics(1)
        HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])

        >>> expr_to_holonomic(exp(x)).change_ics(2)
        HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
        """

        symbolic = True

        if lenics is None and len(self.y0) > self.annihilator.order:
            lenics = len(self.y0)
        dom = self.annihilator.parent.base.domain

        try:
            sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
        except (NotPowerSeriesError, NotHyperSeriesError):
            symbolic = False

        if symbolic and sol.x0 == b:
            return sol

        y0 = self.evalf(b, derivatives=True)
        return HolonomicFunction(self.annihilator, self.x, b, y0)

    def to_meijerg(self):
        """
        Returns a linear combination of Meijer G-functions.

        Examples
        ========

        >>> from sympy.holonomic import expr_to_holonomic
        >>> from sympy import sin, cos, hyperexpand, log, symbols
        >>> x = symbols('x')
        >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
        sin(x) + cos(x)
        >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
        log(x)

        See Also
        ========

        to_hyper
        """

        # convert to hypergeometric first
        rep = self.to_hyper(as_list=True)
        sol = S.Zero

        for i in rep:
            if len(i) == 1:
                sol += i[0]

            elif len(i) == 2:
                sol += i[0] * _hyper_to_meijerg(i[1])

        return sol


def from_hyper(func, x0=0, evalf=False):
    r"""
    Converts a hypergeometric function to holonomic.
    ``func`` is the Hypergeometric Function and ``x0`` is the point at
    which initial conditions are required.

    Examples
    ========

    >>> from sympy.holonomic.holonomic import from_hyper
    >>> from sympy import symbols, hyper, S
    >>> x = symbols('x')
    >>> from_hyper(hyper([], [S(3)/2], x**2/4))
    HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
    """

    a = func.ap
    b = func.bq
    z = func.args[2]
    x = z.atoms(Symbol).pop()
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')

    # generalized hypergeometric differential equation
    xDx = x*Dx
    r1 = 1
    for ai in a:  # XXX gives sympify error if Mul is used with list of all factors
        r1 *= xDx + ai
    xDx_1 = xDx - 1
    # r2 = Mul(*([Dx] + [xDx_1 + bi for bi in b]))  # XXX gives sympify error
    r2 = Dx
    for bi in b:
        r2 *= xDx_1 + bi
    sol = r1 - r2

    simp = hyperexpand(func)

    if simp in (Infinity, NegativeInfinity):
        return HolonomicFunction(sol, x).composition(z)

    def _find_conditions(simp, x, x0, order, evalf=False):
        y0 = []
        for i in range(order):
            if evalf:
                val = simp.subs(x, x0).evalf()
            else:
                val = simp.subs(x, x0)
            # return None if it is Infinite or NaN
            if val.is_finite is False or isinstance(val, NaN):
                return None
            y0.append(val)
            simp = simp.diff(x)
        return y0

    # if the function is known symbolically
    if not isinstance(simp, hyper):
        y0 = _find_conditions(simp, x, x0, sol.order)
        while not y0:
            # if values don't exist at 0, then try to find initial
            # conditions at 1. If it doesn't exist at 1 too then
            # try 2 and so on.
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    if isinstance(simp, hyper):
        x0 = 1
        # use evalf if the function can't be simplified
        y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        return HolonomicFunction(sol, x).composition(z, x0, y0)

    return HolonomicFunction(sol, x).composition(z)


def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
    """
    Converts a Meijer G-function to Holonomic.
    ``func`` is the G-Function and ``x0`` is the point at
    which initial conditions are required.

    Examples
    ========

    >>> from sympy.holonomic.holonomic import from_meijerg
    >>> from sympy import symbols, meijerg, S
    >>> x = symbols('x')
    >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
    HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
    """

    a = func.ap
    b = func.bq
    n = len(func.an)
    m = len(func.bm)
    p = len(a)
    z = func.args[2]
    x = z.atoms(Symbol).pop()
    R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')

    # compute the differential equation satisfied by the
    # Meijer G-function.
    xDx = x*Dx
    xDx1 = xDx + 1
    r1 = x*(-1)**(m + n - p)
    for ai in a:  # XXX gives sympify error if args given in list
        r1 *= xDx1 - ai
    # r2 = Mul(*[xDx - bi for bi in b])  # gives sympify error
    r2 = 1
    for bi in b:
        r2 *= xDx - bi
    sol = r1 - r2

    if not initcond:
        return HolonomicFunction(sol, x).composition(z)

    simp = hyperexpand(func)

    if simp in (Infinity, NegativeInfinity):
        return HolonomicFunction(sol, x).composition(z)

    def _find_conditions(simp, x, x0, order, evalf=False):
        y0 = []
        for i in range(order):
            if evalf:
                val = simp.subs(x, x0).evalf()
            else:
                val = simp.subs(x, x0)
            if val.is_finite is False or isinstance(val, NaN):
                return None
            y0.append(val)
            simp = simp.diff(x)
        return y0

    # computing initial conditions
    if not isinstance(simp, meijerg):
        y0 = _find_conditions(simp, x, x0, sol.order)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    if isinstance(simp, meijerg):
        x0 = 1
        y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order, evalf)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    return HolonomicFunction(sol, x).composition(z)


x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype


def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
    """
    Converts a function or an expression to a holonomic function.

    Parameters
    ==========

    func:
        The expression to be converted.
    x:
        variable for the function.
    x0:
        point at which initial condition must be computed.
    y0:
        One can optionally provide initial condition if the method
        is not able to do it automatically.
    lenics:
        Number of terms in the initial condition. By default it is
        equal to the order of the annihilator.
    domain:
        Ground domain for the polynomials in ``x`` appearing as coefficients
        in the annihilator.
    initcond:
        Set it false if you do not want the initial conditions to be computed.

    Examples
    ========

    >>> from sympy.holonomic.holonomic import expr_to_holonomic
    >>> from sympy import sin, exp, symbols
    >>> x = symbols('x')
    >>> expr_to_holonomic(sin(x))
    HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
    >>> expr_to_holonomic(exp(x))
    HolonomicFunction((-1) + (1)*Dx, x, 0, [1])

    See Also
    ========

    sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
    """
    func = sympify(func)
    syms = func.free_symbols

    if not x:
        if len(syms) == 1:
            x= syms.pop()
        else:
            raise ValueError("Specify the variable for the function")
    elif x in syms:
        syms.remove(x)

    extra_syms = list(syms)

    if domain is None:
        if func.has(Float):
            domain = RR
        else:
            domain = QQ
        if len(extra_syms) != 0:
            domain = domain[extra_syms].get_field()

    # try to convert if the function is polynomial or rational
    solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
    if solpoly:
        return solpoly

    # create the lookup table
    global _lookup_table, domain_for_table
    if not _lookup_table:
        domain_for_table = domain
        _lookup_table = {}
        _create_table(_lookup_table, domain=domain)
    elif domain != domain_for_table:
        domain_for_table = domain
        _lookup_table = {}
        _create_table(_lookup_table, domain=domain)

    # use the table directly to convert to Holonomic
    if func.is_Function:
        f = func.subs(x, x_1)
        t = _mytype(f, x_1)
        if t in _lookup_table:
            l = _lookup_table[t]
            sol = l[0][1].change_x(x)
        else:
            sol = _convert_meijerint(func, x, initcond=False, domain=domain)
            if not sol:
                raise NotImplementedError
            if y0:
                sol.y0 = y0
            if y0 or not initcond:
                sol.x0 = x0
                return sol
            if not lenics:
                lenics = sol.annihilator.order
            _y0 = _find_conditions(func, x, x0, lenics)
            while not _y0:
                x0 += 1
                _y0 = _find_conditions(func, x, x0, lenics)
            return HolonomicFunction(sol.annihilator, x, x0, _y0)

        if y0 or not initcond:
            sol = sol.composition(func.args[0])
            if y0:
                sol.y0 = y0
            sol.x0 = x0
            return sol
        if not lenics:
            lenics = sol.annihilator.order

        _y0 = _find_conditions(func, x, x0, lenics)
        while not _y0:
            x0 += 1
            _y0 = _find_conditions(func, x, x0, lenics)
        return sol.composition(func.args[0], x0, _y0)

    # iterate through the expression recursively
    args = func.args
    f = func.func
    sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)

    if f is Add:
        for i in range(1, len(args)):
            sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)

    elif f is Mul:
        for i in range(1, len(args)):
            sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)

    elif f is Pow:
        sol = sol**args[1]
    sol.x0 = x0
    if not sol:
        raise NotImplementedError
    if y0:
        sol.y0 = y0
    if y0 or not initcond:
        return sol
    if sol.y0:
        return sol
    if not lenics:
        lenics = sol.annihilator.order
    if sol.annihilator.is_singular(x0):
        r = sol._indicial()
        l = list(r)
        if len(r) == 1 and r[l[0]] == S.One:
            r = l[0]
            g = func / (x - x0)**r
            singular_ics = _find_conditions(g, x, x0, lenics)
            singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
            y0 = {r:singular_ics}
            return HolonomicFunction(sol.annihilator, x, x0, y0)

    _y0 = _find_conditions(func, x, x0, lenics)
    while not _y0:
        x0 += 1
        _y0 = _find_conditions(func, x, x0, lenics)

    return HolonomicFunction(sol.annihilator, x, x0, _y0)


## Some helper functions ##

def _normalize(list_of, parent, negative=True):
    """
    Normalize a given annihilator
    """

    num = []
    denom = []
    base = parent.base
    K = base.get_field()
    lcm_denom = base.from_sympy(S.One)
    list_of_coeff = []

    # convert polynomials to the elements of associated
    # fraction field
    for i, j in enumerate(list_of):
        if isinstance(j, base.dtype):
            list_of_coeff.append(K.new(j.to_list()))
        elif not isinstance(j, K.dtype):
            list_of_coeff.append(K.from_sympy(sympify(j)))
        else:
            list_of_coeff.append(j)

        # corresponding numerators of the sequence of polynomials
        num.append(list_of_coeff[i].numer())

        # corresponding denominators
        denom.append(list_of_coeff[i].denom())

    # lcm of denominators in the coefficients
    for i in denom:
        lcm_denom = i.lcm(lcm_denom)

    if negative:
        lcm_denom = -lcm_denom

    lcm_denom = K.new(lcm_denom.to_list())

    # multiply the coefficients with lcm
    for i, j in enumerate(list_of_coeff):
        list_of_coeff[i] = j * lcm_denom

    gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).to_list())

    # gcd of numerators in the coefficients
    for i in num:
        gcd_numer = i.gcd(gcd_numer)

    gcd_numer = K.new(gcd_numer.to_list())

    # divide all the coefficients by the gcd
    for i, j in enumerate(list_of_coeff):
        frac_ans = j / gcd_numer
        list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).to_list())

    return DifferentialOperator(list_of_coeff, parent)


def _derivate_diff_eq(listofpoly, K):
    """
    Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
    where a0, a1,... are polynomials or rational functions. The function
    returns b0, b1, b2... such that the differential equation
    b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
    former equation.
    """

    sol = []
    a = len(listofpoly) - 1
    sol.append(DMFdiff(listofpoly[0], K))

    for i, j in enumerate(listofpoly[1:]):
        sol.append(DMFdiff(j, K) + listofpoly[i])

    sol.append(listofpoly[a])
    return sol


def _hyper_to_meijerg(func):
    """
    Converts a `hyper` to meijerg.
    """
    ap = func.ap
    bq = func.bq

    if any(i <= 0 and int(i) == i for i in ap):
        return hyperexpand(func)

    z = func.args[2]

    # parameters of the `meijerg` function.
    an = (1 - i for i in ap)
    anp = ()
    bm = (S.Zero, )
    bmq = (1 - i for i in bq)

    k = S.One

    for i in bq:
        k = k * gamma(i)

    for i in ap:
        k = k / gamma(i)

    return k * meijerg(an, anp, bm, bmq, -z)


def _add_lists(list1, list2):
    """Takes polynomial sequences of two annihilators a and b and returns
    the list of polynomials of sum of a and b.
    """
    if len(list1) <= len(list2):
        sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
    else:
        sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
    return sol


def _extend_y0(Holonomic, n):
    """
    Tries to find more initial conditions by substituting the initial
    value point in the differential equation.
    """

    if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
        return Holonomic.y0

    annihilator = Holonomic.annihilator
    a = annihilator.order

    listofpoly = []

    y0 = Holonomic.y0
    R = annihilator.parent.base
    K = R.get_field()

    for j in annihilator.listofpoly:
        if isinstance(j, annihilator.parent.base.dtype):
            listofpoly.append(K.new(j.to_list()))

    if len(y0) < a or n <= len(y0):
        return y0
    list_red = [-listofpoly[i] / listofpoly[a]
                for i in range(a)]
    y1 = y0[:min(len(y0), a)]
    for _ in range(n - a):
        sol = 0
        for a, b in zip(y1, list_red):
            r = DMFsubs(b, Holonomic.x0)
            if not getattr(r, 'is_finite', True):
                return y0
            if isinstance(r, (PolyElement, FracElement)):
                r = r.as_expr()
            sol += a * r
        y1.append(sol)
        list_red = _derivate_diff_eq(list_red, K)
    return y0 + y1[len(y0):]


def DMFdiff(frac, K):
    # differentiate a DMF object represented as p/q
    if not isinstance(frac, DMF):
        return frac.diff()

    p = K.numer(frac)
    q = K.denom(frac)
    sol_num = - p * q.diff() + q * p.diff()
    sol_denom = q**2
    return K((sol_num.to_list(), sol_denom.to_list()))


def DMFsubs(frac, x0, mpm=False):
    # substitute the point x0 in DMF object of the form p/q
    if not isinstance(frac, DMF):
        return frac

    p = frac.num
    q = frac.den
    sol_p = S.Zero
    sol_q = S.Zero

    if mpm:
        from mpmath import mp

    for i, j in enumerate(reversed(p)):
        if mpm:
            j = sympify(j)._to_mpmath(mp.prec)
        sol_p += j * x0**i

    for i, j in enumerate(reversed(q)):
        if mpm:
            j = sympify(j)._to_mpmath(mp.prec)
        sol_q += j * x0**i

    if isinstance(sol_p, (PolyElement, FracElement)):
        sol_p = sol_p.as_expr()
    if isinstance(sol_q, (PolyElement, FracElement)):
        sol_q = sol_q.as_expr()

    return sol_p / sol_q


def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
    """
    Converts polynomials, rationals and algebraic functions to holonomic.
    """

    ispoly = func.is_polynomial()
    if not ispoly:
        israt = func.is_rational_function()
    else:
        israt = True

    if not (ispoly or israt):
        basepoly, ratexp = func.as_base_exp()
        if basepoly.is_polynomial() and ratexp.is_Number:
            if isinstance(ratexp, Float):
                ratexp = nsimplify(ratexp)
            m, n = ratexp.p, ratexp.q
            is_alg = True
        else:
            is_alg = False
    else:
        is_alg = True

    if not (ispoly or israt or is_alg):
        return None

    R = domain.old_poly_ring(x)
    _, Dx = DifferentialOperators(R, 'Dx')

    # if the function is constant
    if not func.has(x):
        return HolonomicFunction(Dx, x, 0, [func])

    if ispoly:
        # differential equation satisfied by polynomial
        sol = func * Dx - func.diff(x)
        sol = _normalize(sol.listofpoly, sol.parent, negative=False)
        is_singular = sol.is_singular(x0)

        # try to compute the conditions for singular points
        if y0 is None and x0 == 0 and is_singular:
            rep = R.from_sympy(func).to_list()
            for i, j in enumerate(reversed(rep)):
                if j == 0:
                    continue
                coeff = list(reversed(rep))[i:]
                indicial = i
                break
            for i, j in enumerate(coeff):
                if isinstance(j, (PolyElement, FracElement)):
                    coeff[i] = j.as_expr()
            y0 = {indicial: S(coeff)}

    elif israt:
        p, q = func.as_numer_denom()
        # differential equation satisfied by rational
        sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
        sol = _normalize(sol.listofpoly, sol.parent, negative=False)

    elif is_alg:
        sol = n * (x / m) * Dx - 1
        sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
        is_singular = sol.is_singular(x0)

        # try to compute the conditions for singular points
        if y0 is None and x0 == 0 and is_singular and \
            (lenics is None or lenics <= 1):
            rep = R.from_sympy(basepoly).to_list()
            for i, j in enumerate(reversed(rep)):
                if j == 0:
                    continue
                if isinstance(j, (PolyElement, FracElement)):
                    j = j.as_expr()

                coeff = S(j)**ratexp
                indicial = S(i) * ratexp
                break
            if isinstance(coeff, (PolyElement, FracElement)):
                coeff = coeff.as_expr()
            y0 = {indicial: S([coeff])}

    if y0 or not initcond:
        return HolonomicFunction(sol, x, x0, y0)

    if not lenics:
        lenics = sol.order

    if sol.is_singular(x0):
        r = HolonomicFunction(sol, x, x0)._indicial()
        l = list(r)
        if len(r) == 1 and r[l[0]] == S.One:
            r = l[0]
            g = func / (x - x0)**r
            singular_ics = _find_conditions(g, x, x0, lenics)
            singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
            y0 = {r:singular_ics}
            return HolonomicFunction(sol, x, x0, y0)

    y0 = _find_conditions(func, x, x0, lenics)
    while not y0:
        x0 += 1
        y0 = _find_conditions(func, x, x0, lenics)

    return HolonomicFunction(sol, x, x0, y0)


def _convert_meijerint(func, x, initcond=True, domain=QQ):
    args = meijerint._rewrite1(func, x)

    if args:
        fac, po, g, _ = args
    else:
        return None

    # lists for sum of meijerg functions
    fac_list = [fac * i[0] for i in g]
    t = po.as_base_exp()
    s = t[1] if t[0] == x else S.Zero
    po_list = [s + i[1] for i in g]
    G_list = [i[2] for i in g]

    # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
    def _shift(func, s):
        z = func.args[-1]
        if z.has(I):
            z = z.subs(exp_polar, exp)

        d = z.collect(x, evaluate=False)
        b = list(d)[0]
        a = d[b]

        t = b.as_base_exp()
        b = t[1] if t[0] == x else S.Zero
        r = s / b
        an = (i + r for i in func.args[0][0])
        ap = (i + r for i in func.args[0][1])
        bm = (i + r for i in func.args[1][0])
        bq = (i + r for i in func.args[1][1])

        return a**-r, meijerg((an, ap), (bm, bq), z)

    coeff, m = _shift(G_list[0], po_list[0])
    sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)

    # add all the meijerg functions after converting to holonomic
    for i in range(1, len(G_list)):
        coeff, m = _shift(G_list[i], po_list[i])
        sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)

    return sol


def _create_table(table, domain=QQ):
    """
    Creates the look-up table. For a similar implementation
    see meijerint._create_lookup_table.
    """

    def add(formula, annihilator, arg, x0=0, y0=()):
        """
        Adds a formula in the dictionary
        """
        table.setdefault(_mytype(formula, x_1), []).append((formula,
            HolonomicFunction(annihilator, arg, x0, y0)))

    R = domain.old_poly_ring(x_1)
    _, Dx = DifferentialOperators(R, 'Dx')

    # add some basic functions
    add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
    add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
    add(exp(x_1), Dx - 1, x_1, 0, 1)
    add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])

    add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
    add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
    add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])

    add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
    add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])

    add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)

    add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
    add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)

    add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)


def _find_conditions(func, x, x0, order):
    y0 = []
    for i in range(order):
        val = func.subs(x, x0)
        if isinstance(val, NaN):
            val = limit(func, x, x0)
        if val.is_finite is False or isinstance(val, NaN):
            return None
        y0.append(val)
        func = func.diff(x)
    return y0