Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
29.9 kB
from sympy.assumptions.refine import refine
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.function import expand_log
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (adjoint, conjugate, re, sign, transpose)
from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.polys.polytools import gcd
from sympy.series.order import O
from sympy.simplify.simplify import simplify
from sympy.core.parameters import global_parameters
from sympy.functions.elementary.exponential import match_real_imag
from sympy.abc import x, y, z
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises, XFAIL, _both_exp_pow
@_both_exp_pow
def test_exp_values():
if global_parameters.exp_is_pow:
assert type(exp(x)) is Pow
else:
assert type(exp(x)) is exp
k = Symbol('k', integer=True)
assert exp(nan) is nan
assert exp(oo) is oo
assert exp(-oo) == 0
assert exp(0) == 1
assert exp(1) == E
assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)
assert exp(pi*I/2) == I
assert exp(pi*I) == -1
assert exp(pi*I*Rational(3, 2)) == -I
assert exp(2*pi*I) == 1
assert refine(exp(pi*I*2*k)) == 1
assert refine(exp(pi*I*2*(k + S.Half))) == -1
assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I
assert exp(log(x)) == x
assert exp(2*log(x)) == x**2
assert exp(pi*log(x)) == x**pi
assert exp(17*log(x) + E*log(y)) == x**17 * y**E
assert exp(x*log(x)) != x**x
assert exp(sin(x)*log(x)) != x
assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))
assert exp(-oo, evaluate=False).is_finite is True
assert exp(oo, evaluate=False).is_finite is False
@_both_exp_pow
def test_exp_period():
assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4)
assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9))
assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7))
assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3)
assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0
assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1
assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5))
assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9))
n = Symbol('n', integer=True)
e = Symbol('e', even=True)
assert exp(e*I*pi) == 1
assert exp((e + 1)*I*pi) == -1
assert exp((1 + 4*n)*I*pi/2) == I
assert exp((-1 + 4*n)*I*pi/2) == -I
@_both_exp_pow
def test_exp_log():
x = Symbol("x", real=True)
assert log(exp(x)) == x
assert exp(log(x)) == x
if not global_parameters.exp_is_pow:
assert log(x).inverse() == exp
assert exp(x).inverse() == log
y = Symbol("y", polar=True)
assert log(exp_polar(z)) == z
assert exp(log(y)) == y
@_both_exp_pow
def test_exp_expand():
e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
assert e.expand() == 2
assert exp(x + y) != exp(x)*exp(y)
assert exp(x + y).expand() == exp(x)*exp(y)
@_both_exp_pow
def test_exp__as_base_exp():
assert exp(x).as_base_exp() == (E, x)
assert exp(2*x).as_base_exp() == (E, 2*x)
assert exp(x*y).as_base_exp() == (E, x*y)
assert exp(-x).as_base_exp() == (E, -x)
# Pow( *expr.as_base_exp() ) == expr invariant should hold
assert E**x == exp(x)
assert E**(2*x) == exp(2*x)
assert E**(x*y) == exp(x*y)
assert exp(x).base is S.Exp1
assert exp(x).exp == x
@_both_exp_pow
def test_exp_infinity():
assert exp(I*y) != nan
assert refine(exp(I*oo)) is nan
assert refine(exp(-I*oo)) is nan
assert exp(y*I*oo) != nan
assert exp(zoo) is nan
x = Symbol('x', extended_real=True, finite=False)
assert exp(x).is_complex is None
@_both_exp_pow
def test_exp_subs():
x = Symbol('x')
e = (exp(3*log(x), evaluate=False)) # evaluates to x**3
assert e.subs(x**3, y**3) == e
assert e.subs(x**2, 5) == e
assert (x**3).subs(x**2, y) != y**Rational(3, 2)
assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
assert exp(x).subs(E, y) == y**x
x = symbols('x', real=True)
assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
x = symbols('x', positive=True)
assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
# differentiate between E and exp
assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
assert exp(exp(x + E)).subs(exp, sin) == sin(sin(x + E))
assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
assert exp(3).subs(E, sin) == sin(3)
def test_exp_adjoint():
assert adjoint(exp(x)) == exp(adjoint(x))
def test_exp_conjugate():
assert conjugate(exp(x)) == exp(conjugate(x))
@_both_exp_pow
def test_exp_transpose():
assert transpose(exp(x)) == exp(transpose(x))
@_both_exp_pow
def test_exp_rewrite():
assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2
if not global_parameters.exp_is_pow:
assert exp(x*log(y)).rewrite(Pow) == y**x
assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)]
assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y
n = Symbol('n', integer=True)
assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*2/5
assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
assert (Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit().cancel()
== 4*I/(sqrt(3) + 3*I))
@_both_exp_pow
def test_exp_leading_term():
assert exp(x).as_leading_term(x) == 1
assert exp(2 + x).as_leading_term(x) == exp(2)
assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3)
# The following tests are commented, since now SymPy returns the
# original function when the leading term in the series expansion does
# not exist.
# raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x))
# raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x))
# raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x))
@_both_exp_pow
def test_exp_taylor_term():
x = symbols('x')
assert exp(x).taylor_term(1, x) == x
assert exp(x).taylor_term(3, x) == x**3/6
assert exp(x).taylor_term(4, x) == x**4/24
assert exp(x).taylor_term(-1, x) is S.Zero
def test_exp_MatrixSymbol():
A = MatrixSymbol("A", 2, 2)
assert exp(A).has(exp)
def test_exp_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: exp(x).fdiff(2))
def test_log_values():
assert log(nan) is nan
assert log(oo) is oo
assert log(-oo) is oo
assert log(zoo) is zoo
assert log(-zoo) is zoo
assert log(0) is zoo
assert log(1) == 0
assert log(-1) == I*pi
assert log(E) == 1
assert log(-E).expand() == 1 + I*pi
assert unchanged(log, pi)
assert log(-pi).expand() == log(pi) + I*pi
assert unchanged(log, 17)
assert log(-17) == log(17) + I*pi
assert log(I) == I*pi/2
assert log(-I) == -I*pi/2
assert log(17*I) == I*pi/2 + log(17)
assert log(-17*I).expand() == -I*pi/2 + log(17)
assert log(oo*I) is oo
assert log(-oo*I) is oo
assert log(0, 2) is zoo
assert log(0, 5) is zoo
assert exp(-log(3))**(-1) == 3
assert log(S.Half) == -log(2)
assert log(2*3).func is log
assert log(2*3**2).func is log
def test_match_real_imag():
x, y = symbols('x,y', real=True)
i = Symbol('i', imaginary=True)
assert match_real_imag(S.One) == (1, 0)
assert match_real_imag(I) == (0, 1)
assert match_real_imag(3 - 5*I) == (3, -5)
assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half)
assert match_real_imag(x + y*I) == (x, y)
assert match_real_imag(x*I + y*I) == (0, x + y)
assert match_real_imag((x + y)*I) == (0, x + y)
assert match_real_imag(Rational(-2, 3)*i*I) == (None, None)
assert match_real_imag(1 - 2*i) == (None, None)
assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None)
def test_log_exact():
# check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10:
for n in range(-23, 24):
if gcd(n, 24) != 1:
assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24
for n in range(-9, 10):
assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10
assert log(S.Half - I*sqrt(3)/2) == -I*pi/3
assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3)
assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4)
assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6)
assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5)
assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10)
assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8)
assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12)
assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3)
assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4
assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2
assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12)
assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8)
assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8
assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12)
assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5)
assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4
assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12)
assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3)
assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8
zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2)
assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2
assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo
# bail quickly if no obvious simplification is possible:
assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000)
# beware of non-real coefficients
assert unchanged(log, sqrt(2-sqrt(5))*(1 + I))
def test_log_base():
assert log(1, 2) == 0
assert log(2, 2) == 1
assert log(3, 2) == log(3)/log(2)
assert log(6, 2) == 1 + log(3)/log(2)
assert log(6, 3) == 1 + log(2)/log(3)
assert log(2**3, 2) == 3
assert log(3**3, 3) == 3
assert log(5, 1) is zoo
assert log(1, 1) is nan
assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10)
assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
assert log(Rational(2, 3), Rational(2, 5)) == \
log(Rational(2, 3))/log(Rational(2, 5))
# issue 17148
assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3
def test_log_symbolic():
assert log(x, exp(1)) == log(x)
assert log(exp(x)) != x
assert log(x, exp(1)) == log(x)
assert log(x*y) != log(x) + log(y)
assert log(x/y).expand() != log(x) - log(y)
assert log(x/y).expand(force=True) == log(x) - log(y)
assert log(x**y).expand() != y*log(x)
assert log(x**y).expand(force=True) == y*log(x)
assert log(x, 2) == log(x)/log(2)
assert log(E, 2) == 1/log(2)
p, q = symbols('p,q', positive=True)
r = Symbol('r', real=True)
assert log(p**2) != 2*log(p)
assert log(p**2).expand() == 2*log(p)
assert log(x**2).expand() != 2*log(x)
assert log(p**q) != q*log(p)
assert log(exp(p)) == p
assert log(p*q) != log(p) + log(q)
assert log(p*q).expand() == log(p) + log(q)
assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
assert log(-exp(p)) != p + I*pi
assert log(-exp(x)).expand() != x + I*pi
assert log(-exp(r)).expand() == r + I*pi
assert log(x**y) != y*log(x)
assert (log(x**-5)**-1).expand() != -1/log(x)/5
assert (log(p**-5)**-1).expand() == -1/log(p)/5
assert log(-x).func is log and log(-x).args[0] == -x
assert log(-p).func is log and log(-p).args[0] == -p
def test_log_exp():
assert log(exp(4*I*pi)) == 0 # exp evaluates
assert log(exp(-5*I*pi)) == I*pi # exp evaluates
assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4)
assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7)
assert log(exp(-5*I)) == -5*I + 2*I*pi
@_both_exp_pow
def test_exp_assumptions():
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
for e in exp, exp_polar:
assert e(x).is_real is None
assert e(x).is_imaginary is None
assert e(i).is_real is None
assert e(i).is_imaginary is None
assert e(r).is_real is True
assert e(r).is_imaginary is False
assert e(re(x)).is_extended_real is True
assert e(re(x)).is_imaginary is False
assert Pow(E, I*pi, evaluate=False).is_imaginary == False
assert Pow(E, 2*I*pi, evaluate=False).is_imaginary == False
assert Pow(E, I*pi/2, evaluate=False).is_imaginary == True
assert Pow(E, I*pi/3, evaluate=False).is_imaginary is None
assert exp(0, evaluate=False).is_algebraic
a = Symbol('a', algebraic=True)
an = Symbol('an', algebraic=True, nonzero=True)
r = Symbol('r', rational=True)
rn = Symbol('rn', rational=True, nonzero=True)
assert exp(a).is_algebraic is None
assert exp(an).is_algebraic is False
assert exp(pi*r).is_algebraic is None
assert exp(pi*rn).is_algebraic is False
assert exp(0, evaluate=False).is_algebraic is True
assert exp(I*pi/3, evaluate=False).is_algebraic is True
assert exp(I*pi*r, evaluate=False).is_algebraic is True
@_both_exp_pow
def test_exp_AccumBounds():
assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)
def test_log_assumptions():
p = symbols('p', positive=True)
n = symbols('n', negative=True)
z = symbols('z', zero=True)
x = symbols('x', infinite=True, extended_positive=True)
assert log(z).is_positive is False
assert log(x).is_extended_positive is True
assert log(2) > 0
assert log(1, evaluate=False).is_zero
assert log(1 + z).is_zero
assert log(p).is_zero is None
assert log(n).is_zero is False
assert log(0.5).is_negative is True
assert log(exp(p) + 1).is_positive
assert log(1, evaluate=False).is_algebraic
assert log(42, evaluate=False).is_algebraic is False
assert log(1 + z).is_rational
def test_log_hashing():
assert x != log(log(x))
assert hash(x) != hash(log(log(x)))
assert log(x) != log(log(log(x)))
e = 1/log(log(x) + log(log(x)))
assert e.base.func is log
e = 1/log(log(x) + log(log(log(x))))
assert e.base.func is log
e = log(log(x))
assert e.func is log
assert x.func is not log
assert hash(log(log(x))) != hash(x)
assert e != x
def test_log_sign():
assert sign(log(2)) == 1
def test_log_expand_complex():
assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi
def test_log_apply_evalf():
value = (log(3)/log(2) - 1).evalf()
assert value.epsilon_eq(Float("0.58496250072115618145373"))
def test_log_leading_term():
p = Symbol('p')
# Test for STEP 3
assert log(1 + x + x**2).as_leading_term(x, cdir=1) == x
# Test for STEP 4
assert log(2*x).as_leading_term(x, cdir=1) == log(x) + log(2)
assert log(2*x).as_leading_term(x, cdir=-1) == log(x) + log(2)
assert log(-2*x).as_leading_term(x, cdir=1, logx=p) == p + log(2) + I*pi
assert log(-2*x).as_leading_term(x, cdir=-1, logx=p) == p + log(2) - I*pi
# Test for STEP 5
assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2) - I*pi
assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - I*pi
assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2)
assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - 2*I*pi
assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=1) == -I*pi
assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=-1) == -I*pi
assert log(-1/(1 - x)).as_leading_term(x, cdir=1) == I*pi
assert log(-1/(1 - x)).as_leading_term(x, cdir=-1) == I*pi
def test_log_nseries():
p = Symbol('p')
assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=1) == p
assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=-1) == p + 2*I*pi
assert log(x - 1)._eval_nseries(x, 4, None, I) == I*pi - x - x**2/2 - x**3/3 + O(x**4)
assert log(x - 1)._eval_nseries(x, 4, None, -I) == -I*pi - x - x**2/2 - x**3/3 + O(x**4)
assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x + x**2/2 + O(x**3)
assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == -I*pi - I*x + x**2/2 + O(x**3)
assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x**2 + O(x**3)
assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == I*pi - I*x**2 + O(x**3)
assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == log(2) + log(x) + \
x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -2*I*pi + log(2) + \
log(x) - x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == -I*pi + log(2) + log(x) + \
x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -I*pi + log(2) + log(x) - \
x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
assert log(sqrt(-I*x**2 - 3)*sqrt(-I*x**2 - 1) - 2)._eval_nseries(x, 3, None, 1) == -I*pi + \
log(sqrt(3) + 2) + I*x**2*(-2 + 4*sqrt(3)/3) + O(x**3)
assert log(-1/(1 - x))._eval_nseries(x, 3, None, 1) == I*pi + x + x**2/2 + O(x**3)
assert log(-1/(1 - x))._eval_nseries(x, 3, None, -1) == I*pi + x + x**2/2 + O(x**3)
def test_log_series():
# Note Series at infinities other than oo/-oo were introduced as a part of
# pull request 23798. Refer https://github.com/sympy/sympy/pull/23798 for
# more information.
expr1 = log(1 + x)
expr2 = log(x + sqrt(x**2 + 1))
assert expr1.series(x, x0=I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x + \
I*pi/2 - log(I/x) + O(x**(-4), (x, oo*I))
assert expr1.series(x, x0=-I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x - \
I*pi/2 - log(-I/x) + O(x**(-4), (x, -oo*I))
assert expr2.series(x, x0=I*oo, n=4) == 1/(4*x**2) + I*pi/2 + log(2) - \
log(I/x) + O(x**(-4), (x, oo*I))
assert expr2.series(x, x0=-I*oo, n=4) == -1/(4*x**2) - I*pi/2 - log(2) + \
log(-I/x) + O(x**(-4), (x, -oo*I))
def test_log_expand():
w = Symbol("w", positive=True)
e = log(w**(log(5)/log(3)))
assert e.expand() == log(5)/log(3) * log(w)
x, y, z = symbols('x,y,z', positive=True)
assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
log((log(y) + log(z))*log(x)) + log(2)]
assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
assert log(x**log(x**2)).expand() == 2*log(x)**2
x, y = symbols('x,y')
assert log(x*y).expand(force=True) == log(x) + log(y)
assert log(x**y).expand(force=True) == y*log(x)
assert log(exp(x)).expand(force=True) == x
# there's generally no need to expand out logs since this requires
# factoring and if simplification is sought, it's cheaper to put
# logs together than it is to take them apart.
assert log(2*3**2).expand() != 2*log(3) + log(2)
@XFAIL
def test_log_expand_fail():
x, y, z = symbols('x,y,z', positive=True)
assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log(
x) + y*log(y + z) + z*log(x) + z*log(y + z)
def test_log_simplify():
x = Symbol("x", positive=True)
assert log(x**2).expand() == 2*log(x)
assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)
z = Symbol('z')
assert log(sqrt(z)).expand() == log(z)/2
assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
assert log(z**(-1)).expand() != -log(z)
assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)
def test_log_AccumBounds():
assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
assert log(AccumBounds(0, E)) == AccumBounds(-oo, 1)
assert log(AccumBounds(-1, E)) == S.NaN
assert log(AccumBounds(0, oo)) == AccumBounds(-oo, oo)
assert log(AccumBounds(-oo, 0)) == S.NaN
assert log(AccumBounds(-oo, oo)) == S.NaN
@_both_exp_pow
def test_lambertw():
k = Symbol('k')
assert LambertW(x, 0) == LambertW(x)
assert LambertW(x, 0, evaluate=False) != LambertW(x)
assert LambertW(0) == 0
assert LambertW(E) == 1
assert LambertW(-1/E) == -1
assert LambertW(100*log(100)) == log(100)
assert LambertW(-log(2)/2) == -log(2)
assert LambertW(81*log(3)) == 3*log(3)
assert LambertW(sqrt(E)/2) == S.Half
assert LambertW(oo) is oo
assert LambertW(0, 1) is -oo
assert LambertW(0, 42) is -oo
assert LambertW(-pi/2, -1) == -I*pi/2
assert LambertW(-1/E, -1) == -1
assert LambertW(-2*exp(-2), -1) == -2
assert LambertW(2*log(2)) == log(2)
assert LambertW(-pi/2) == I*pi/2
assert LambertW(exp(1 + E)) == E
assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))
assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
Float("0.701338383413663009202120278965", 30), 1e-29)
assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))
assert LambertW(-1).is_real is False # issue 5215
assert LambertW(2, evaluate=False).is_real
p = Symbol('p', positive=True)
assert LambertW(p, evaluate=False).is_real
assert LambertW(p**(p+1)*log(p)) == p*log(p)
assert LambertW(p - 1, evaluate=False).is_real is None
assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
assert LambertW(S.Half, -1, evaluate=False).is_real is False
assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real
assert LambertW(-10, -1, evaluate=False).is_real is False
assert LambertW(-2, 2, evaluate=False).is_real is False
assert LambertW(0, evaluate=False).is_algebraic
na = Symbol('na', nonzero=True, algebraic=True)
assert LambertW(na).is_algebraic is False
assert LambertW(p).is_zero is False
n = Symbol('n', negative=True)
assert LambertW(n).is_zero is False
def test_issue_5673():
e = LambertW(-1)
assert e.is_comparable is False
assert e.is_positive is not True
e2 = 1 - 1/(1 - exp(-1000))
assert e2.is_positive is not True
e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
assert e3.is_nonzero is not True
def test_log_fdiff():
x = Symbol('x')
raises(ArgumentIndexError, lambda: log(x).fdiff(2))
def test_log_taylor_term():
x = symbols('x')
assert log(x).taylor_term(0, x) == x
assert log(x).taylor_term(1, x) == -x**2/2
assert log(x).taylor_term(4, x) == x**5/5
assert log(x).taylor_term(-1, x) is S.Zero
def test_exp_expand_NC():
A, B, C = symbols('A,B,C', commutative=False)
assert exp(A + B).expand() == exp(A + B)
assert exp(A + B + C).expand() == exp(A + B + C)
assert exp(x + y).expand() == exp(x)*exp(y)
assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)
@_both_exp_pow
def test_as_numer_denom():
n = symbols('n', negative=True)
assert exp(x).as_numer_denom() == (exp(x), 1)
assert exp(-x).as_numer_denom() == (1, exp(x))
assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
assert exp(-2).as_numer_denom() == (1, exp(2))
assert exp(n).as_numer_denom() == (1, exp(-n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
# Check noncommutativity
a = symbols('a', commutative=False)
assert exp(-a).as_numer_denom() == (exp(-a), 1)
@_both_exp_pow
def test_polar():
x, y = symbols('x y', polar=True)
assert abs(exp_polar(I*4)) == 1
assert abs(exp_polar(0)) == 1
assert abs(exp_polar(2 + 3*I)) == exp(2)
assert exp_polar(I*10).n() == exp_polar(I*10)
assert log(exp_polar(z)) == z
assert log(x*y).expand() == log(x) + log(y)
assert log(x**z).expand() == z*log(x)
assert exp_polar(3).exp == 3
# Compare exp(1.0*pi*I).
assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0
assert exp_polar(0).is_rational is True # issue 8008
def test_exp_summation():
w = symbols("w")
m, n, i, j = symbols("m n i j")
expr = exp(Sum(w*i, (i, 0, n), (j, 0, m)))
assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m))
def test_log_product():
from sympy.abc import n, m
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
z = symbols('z', real=True)
w = symbols('w')
expr = log(Product(x**i, (i, 1, n)))
assert simplify(expr) == expr
assert expr.expand() == Sum(i*log(x), (i, 1, n))
expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
assert simplify(expr) == expr
assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
expr = log(Product(-2, (n, 0, 4)))
assert simplify(expr) == expr
assert expr.expand() == expr
assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4))
expr = log(Product(exp(z*i), (i, 0, n)))
assert expr.expand() == Sum(z*i, (i, 0, n))
expr = log(Product(exp(w*i), (i, 0, n)))
assert expr.expand() == expr
assert expr.expand(force=True) == Sum(w*i, (i, 0, n))
expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m)))
assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m))
@XFAIL
def test_log_product_simplify_to_sum():
from sympy.abc import n, m
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
def test_issue_8866():
assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))
y = Symbol('y', positive=True)
l1 = log(exp(y), exp(10))
b1 = log(exp(y), exp(5))
l2 = log(exp(y), exp(10), evaluate=False)
b2 = log(exp(y), exp(5), evaluate=False)
assert simplify(log(l1, b1)) == simplify(log(l2, b2))
assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))
def test_log_expand_factor():
assert (log(18)/log(3) - 2).expand(factor=True) == log(2)/log(3)
assert (log(12)/log(2)).expand(factor=True) == log(3)/log(2) + 2
assert (log(15)/log(3)).expand(factor=True) == 1 + log(5)/log(3)
assert (log(2)/(-log(12) + log(24))).expand(factor=True) == 1
assert expand_log(log(12), factor=True) == log(3) + 2*log(2)
assert expand_log(log(21)/log(7), factor=False) == log(3)/log(7) + 1
assert expand_log(log(45)/log(5) + log(20), factor=False) == \
1 + 2*log(3)/log(5) + log(20)
assert expand_log(log(45)/log(5) + log(26), factor=True) == \
log(2) + log(13) + (log(5) + 2*log(3))/log(5)
def test_issue_9116():
n = Symbol('n', positive=True, integer=True)
assert log(n).is_nonnegative is True
def test_issue_18473():
assert exp(x*log(cos(1/x))).as_leading_term(x) == S.NaN
assert exp(x*log(tan(1/x))).as_leading_term(x) == S.NaN
assert log(cos(1/x)).as_leading_term(x) == S.NaN
assert log(tan(1/x)).as_leading_term(x) == S.NaN
assert log(cos(1/x) + 2).as_leading_term(x) == AccumBounds(0, log(3))
assert exp(x*log(cos(1/x) + 2)).as_leading_term(x) == 1
assert log(cos(1/x) - 2).as_leading_term(x) == S.NaN
assert exp(x*log(cos(1/x) - 2)).as_leading_term(x) == S.NaN
assert log(cos(1/x) + 1).as_leading_term(x) == AccumBounds(-oo, log(2))
assert exp(x*log(cos(1/x) + 1)).as_leading_term(x) == AccumBounds(0, 1)
assert log(sin(1/x)**2).as_leading_term(x) == AccumBounds(-oo, 0)
assert exp(x*log(sin(1/x)**2)).as_leading_term(x) == AccumBounds(0, 1)
assert log(tan(1/x)**2).as_leading_term(x) == AccumBounds(-oo, oo)
assert exp(2*x*(log(tan(1/x)**2))).as_leading_term(x) == AccumBounds(0, oo)