File size: 29,866 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
from sympy.assumptions.refine import refine
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.function import expand_log
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (adjoint, conjugate, re, sign, transpose)
from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.polys.polytools import gcd
from sympy.series.order import O
from sympy.simplify.simplify import simplify
from sympy.core.parameters import global_parameters
from sympy.functions.elementary.exponential import match_real_imag
from sympy.abc import x, y, z
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.testing.pytest import raises, XFAIL, _both_exp_pow


@_both_exp_pow
def test_exp_values():
    if global_parameters.exp_is_pow:
        assert type(exp(x)) is Pow
    else:
        assert type(exp(x)) is exp

    k = Symbol('k', integer=True)

    assert exp(nan) is nan

    assert exp(oo) is oo
    assert exp(-oo) == 0

    assert exp(0) == 1
    assert exp(1) == E
    assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
    assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)

    assert exp(pi*I/2) == I
    assert exp(pi*I) == -1
    assert exp(pi*I*Rational(3, 2)) == -I
    assert exp(2*pi*I) == 1

    assert refine(exp(pi*I*2*k)) == 1
    assert refine(exp(pi*I*2*(k + S.Half))) == -1
    assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
    assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I

    assert exp(log(x)) == x
    assert exp(2*log(x)) == x**2
    assert exp(pi*log(x)) == x**pi

    assert exp(17*log(x) + E*log(y)) == x**17 * y**E

    assert exp(x*log(x)) != x**x
    assert exp(sin(x)*log(x)) != x

    assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
    assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))

    assert exp(-oo, evaluate=False).is_finite is True
    assert exp(oo, evaluate=False).is_finite is False


@_both_exp_pow
def test_exp_period():
    assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4)
    assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9))
    assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7))
    assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3)
    assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0
    assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1

    assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5))
    assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9))

    n = Symbol('n', integer=True)
    e = Symbol('e', even=True)
    assert exp(e*I*pi) == 1
    assert exp((e + 1)*I*pi) == -1
    assert exp((1 + 4*n)*I*pi/2) == I
    assert exp((-1 + 4*n)*I*pi/2) == -I


@_both_exp_pow
def test_exp_log():
    x = Symbol("x", real=True)
    assert log(exp(x)) == x
    assert exp(log(x)) == x

    if not global_parameters.exp_is_pow:
        assert log(x).inverse() == exp
        assert exp(x).inverse() == log

    y = Symbol("y", polar=True)
    assert log(exp_polar(z)) == z
    assert exp(log(y)) == y


@_both_exp_pow
def test_exp_expand():
    e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
    assert e.expand() == 2
    assert exp(x + y) != exp(x)*exp(y)
    assert exp(x + y).expand() == exp(x)*exp(y)


@_both_exp_pow
def test_exp__as_base_exp():
    assert exp(x).as_base_exp() == (E, x)
    assert exp(2*x).as_base_exp() == (E, 2*x)
    assert exp(x*y).as_base_exp() == (E, x*y)
    assert exp(-x).as_base_exp() == (E, -x)

    # Pow( *expr.as_base_exp() ) == expr    invariant should hold
    assert E**x == exp(x)
    assert E**(2*x) == exp(2*x)
    assert E**(x*y) == exp(x*y)

    assert exp(x).base is S.Exp1
    assert exp(x).exp == x


@_both_exp_pow
def test_exp_infinity():
    assert exp(I*y) != nan
    assert refine(exp(I*oo)) is nan
    assert refine(exp(-I*oo)) is nan
    assert exp(y*I*oo) != nan
    assert exp(zoo) is nan
    x = Symbol('x', extended_real=True, finite=False)
    assert exp(x).is_complex is None


@_both_exp_pow
def test_exp_subs():
    x = Symbol('x')
    e = (exp(3*log(x), evaluate=False))  # evaluates to x**3
    assert e.subs(x**3, y**3) == e
    assert e.subs(x**2, 5) == e
    assert (x**3).subs(x**2, y) != y**Rational(3, 2)
    assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
    assert exp(x).subs(E, y) == y**x
    x = symbols('x', real=True)
    assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
    assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
    x = symbols('x', positive=True)
    assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
    # differentiate between E and exp
    assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
    assert exp(exp(x + E)).subs(exp, sin) == sin(sin(x + E))
    assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
    assert exp(3).subs(E, sin) == sin(3)


def test_exp_adjoint():
    assert adjoint(exp(x)) == exp(adjoint(x))


def test_exp_conjugate():
    assert conjugate(exp(x)) == exp(conjugate(x))


@_both_exp_pow
def test_exp_transpose():
    assert transpose(exp(x)) == exp(transpose(x))


@_both_exp_pow
def test_exp_rewrite():
    assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
    assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
    assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
    assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
    assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
    assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
    assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
    assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2
    if not global_parameters.exp_is_pow:
        assert exp(x*log(y)).rewrite(Pow) == y**x
        assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)]
        assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y

    n = Symbol('n', integer=True)

    assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*2/5
    assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
    assert (Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit().cancel()
            == 4*I/(sqrt(3) + 3*I))


@_both_exp_pow
def test_exp_leading_term():
    assert exp(x).as_leading_term(x) == 1
    assert exp(2 + x).as_leading_term(x) == exp(2)
    assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3)

    # The following tests are commented, since now SymPy returns the
    # original function when the leading term in the series expansion does
    # not exist.
    # raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x))
    # raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x))
    # raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x))


@_both_exp_pow
def test_exp_taylor_term():
    x = symbols('x')
    assert exp(x).taylor_term(1, x) == x
    assert exp(x).taylor_term(3, x) == x**3/6
    assert exp(x).taylor_term(4, x) == x**4/24
    assert exp(x).taylor_term(-1, x) is S.Zero


def test_exp_MatrixSymbol():
    A = MatrixSymbol("A", 2, 2)
    assert exp(A).has(exp)


def test_exp_fdiff():
    x = Symbol('x')
    raises(ArgumentIndexError, lambda: exp(x).fdiff(2))


def test_log_values():
    assert log(nan) is nan

    assert log(oo) is oo
    assert log(-oo) is oo

    assert log(zoo) is zoo
    assert log(-zoo) is zoo

    assert log(0) is zoo

    assert log(1) == 0
    assert log(-1) == I*pi

    assert log(E) == 1
    assert log(-E).expand() == 1 + I*pi

    assert unchanged(log, pi)
    assert log(-pi).expand() == log(pi) + I*pi

    assert unchanged(log, 17)
    assert log(-17) == log(17) + I*pi

    assert log(I) == I*pi/2
    assert log(-I) == -I*pi/2

    assert log(17*I) == I*pi/2 + log(17)
    assert log(-17*I).expand() == -I*pi/2 + log(17)

    assert log(oo*I) is oo
    assert log(-oo*I) is oo
    assert log(0, 2) is zoo
    assert log(0, 5) is zoo

    assert exp(-log(3))**(-1) == 3

    assert log(S.Half) == -log(2)
    assert log(2*3).func is log
    assert log(2*3**2).func is log


def test_match_real_imag():
    x, y = symbols('x,y', real=True)
    i = Symbol('i', imaginary=True)
    assert match_real_imag(S.One) == (1, 0)
    assert match_real_imag(I) == (0, 1)
    assert match_real_imag(3 - 5*I) == (3, -5)
    assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half)
    assert match_real_imag(x + y*I) == (x, y)
    assert match_real_imag(x*I + y*I) == (0, x + y)
    assert match_real_imag((x + y)*I) == (0, x + y)
    assert match_real_imag(Rational(-2, 3)*i*I) == (None, None)
    assert match_real_imag(1 - 2*i) == (None, None)
    assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None)


def test_log_exact():
    # check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10:
    for n in range(-23, 24):
        if gcd(n, 24) != 1:
            assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24
        for n in range(-9, 10):
            assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10

    assert log(S.Half - I*sqrt(3)/2) == -I*pi/3
    assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3)
    assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4)
    assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6)

    assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5)
    assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10)
    assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8)
    assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12)

    assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3)
    assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4
    assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2
    assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12)
    assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8)
    assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8
    assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12)
    assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5)

    assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4
    assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12)
    assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3)
    assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8

    zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2)
    assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2
    assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo

    # bail quickly if no obvious simplification is possible:
    assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000)
    # beware of non-real coefficients
    assert unchanged(log, sqrt(2-sqrt(5))*(1 + I))


def test_log_base():
    assert log(1, 2) == 0
    assert log(2, 2) == 1
    assert log(3, 2) == log(3)/log(2)
    assert log(6, 2) == 1 + log(3)/log(2)
    assert log(6, 3) == 1 + log(2)/log(3)
    assert log(2**3, 2) == 3
    assert log(3**3, 3) == 3
    assert log(5, 1) is zoo
    assert log(1, 1) is nan
    assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10)
    assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
    assert log(Rational(2, 3), Rational(2, 5)) == \
        log(Rational(2, 3))/log(Rational(2, 5))
    # issue 17148
    assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3


def test_log_symbolic():
    assert log(x, exp(1)) == log(x)
    assert log(exp(x)) != x

    assert log(x, exp(1)) == log(x)
    assert log(x*y) != log(x) + log(y)
    assert log(x/y).expand() != log(x) - log(y)
    assert log(x/y).expand(force=True) == log(x) - log(y)
    assert log(x**y).expand() != y*log(x)
    assert log(x**y).expand(force=True) == y*log(x)

    assert log(x, 2) == log(x)/log(2)
    assert log(E, 2) == 1/log(2)

    p, q = symbols('p,q', positive=True)
    r = Symbol('r', real=True)

    assert log(p**2) != 2*log(p)
    assert log(p**2).expand() == 2*log(p)
    assert log(x**2).expand() != 2*log(x)
    assert log(p**q) != q*log(p)
    assert log(exp(p)) == p
    assert log(p*q) != log(p) + log(q)
    assert log(p*q).expand() == log(p) + log(q)

    assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
    assert log(-exp(p)) != p + I*pi
    assert log(-exp(x)).expand() != x + I*pi
    assert log(-exp(r)).expand() == r + I*pi

    assert log(x**y) != y*log(x)

    assert (log(x**-5)**-1).expand() != -1/log(x)/5
    assert (log(p**-5)**-1).expand() == -1/log(p)/5
    assert log(-x).func is log and log(-x).args[0] == -x
    assert log(-p).func is log and log(-p).args[0] == -p


def test_log_exp():
    assert log(exp(4*I*pi)) == 0     # exp evaluates
    assert log(exp(-5*I*pi)) == I*pi # exp evaluates
    assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4)
    assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7)
    assert log(exp(-5*I)) == -5*I + 2*I*pi


@_both_exp_pow
def test_exp_assumptions():
    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)
    for e in exp, exp_polar:
        assert e(x).is_real is None
        assert e(x).is_imaginary is None
        assert e(i).is_real is None
        assert e(i).is_imaginary is None
        assert e(r).is_real is True
        assert e(r).is_imaginary is False
        assert e(re(x)).is_extended_real is True
        assert e(re(x)).is_imaginary is False

    assert Pow(E, I*pi, evaluate=False).is_imaginary == False
    assert Pow(E, 2*I*pi, evaluate=False).is_imaginary == False
    assert Pow(E, I*pi/2, evaluate=False).is_imaginary == True
    assert Pow(E, I*pi/3, evaluate=False).is_imaginary is None

    assert exp(0, evaluate=False).is_algebraic

    a = Symbol('a', algebraic=True)
    an = Symbol('an', algebraic=True, nonzero=True)
    r = Symbol('r', rational=True)
    rn = Symbol('rn', rational=True, nonzero=True)
    assert exp(a).is_algebraic is None
    assert exp(an).is_algebraic is False
    assert exp(pi*r).is_algebraic is None
    assert exp(pi*rn).is_algebraic is False

    assert exp(0, evaluate=False).is_algebraic is True
    assert exp(I*pi/3, evaluate=False).is_algebraic is True
    assert exp(I*pi*r, evaluate=False).is_algebraic is True


@_both_exp_pow
def test_exp_AccumBounds():
    assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)


def test_log_assumptions():
    p = symbols('p', positive=True)
    n = symbols('n', negative=True)
    z = symbols('z', zero=True)
    x = symbols('x', infinite=True, extended_positive=True)

    assert log(z).is_positive is False
    assert log(x).is_extended_positive is True
    assert log(2) > 0
    assert log(1, evaluate=False).is_zero
    assert log(1 + z).is_zero
    assert log(p).is_zero is None
    assert log(n).is_zero is False
    assert log(0.5).is_negative is True
    assert log(exp(p) + 1).is_positive

    assert log(1, evaluate=False).is_algebraic
    assert log(42, evaluate=False).is_algebraic is False

    assert log(1 + z).is_rational


def test_log_hashing():
    assert x != log(log(x))
    assert hash(x) != hash(log(log(x)))
    assert log(x) != log(log(log(x)))

    e = 1/log(log(x) + log(log(x)))
    assert e.base.func is log
    e = 1/log(log(x) + log(log(log(x))))
    assert e.base.func is log

    e = log(log(x))
    assert e.func is log
    assert x.func is not log
    assert hash(log(log(x))) != hash(x)
    assert e != x


def test_log_sign():
    assert sign(log(2)) == 1


def test_log_expand_complex():
    assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
    assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi


def test_log_apply_evalf():
    value = (log(3)/log(2) - 1).evalf()
    assert value.epsilon_eq(Float("0.58496250072115618145373"))


def test_log_leading_term():
    p = Symbol('p')

    # Test for STEP 3
    assert log(1 + x + x**2).as_leading_term(x, cdir=1) == x
    # Test for STEP 4
    assert log(2*x).as_leading_term(x, cdir=1) == log(x) + log(2)
    assert log(2*x).as_leading_term(x, cdir=-1) == log(x) + log(2)
    assert log(-2*x).as_leading_term(x, cdir=1, logx=p) == p + log(2) + I*pi
    assert log(-2*x).as_leading_term(x, cdir=-1, logx=p) == p + log(2) - I*pi
    # Test for STEP 5
    assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2) - I*pi
    assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - I*pi
    assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2)
    assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - 2*I*pi
    assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=1) == -I*pi
    assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=-1) == -I*pi
    assert log(-1/(1 - x)).as_leading_term(x, cdir=1) == I*pi
    assert log(-1/(1 - x)).as_leading_term(x, cdir=-1) == I*pi


def test_log_nseries():
    p = Symbol('p')
    assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=1) == p
    assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=-1) == p + 2*I*pi
    assert log(x - 1)._eval_nseries(x, 4, None, I) == I*pi - x - x**2/2 - x**3/3 + O(x**4)
    assert log(x - 1)._eval_nseries(x, 4, None, -I) == -I*pi - x - x**2/2 - x**3/3 + O(x**4)
    assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x + x**2/2 + O(x**3)
    assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == -I*pi - I*x + x**2/2 + O(x**3)
    assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x**2 + O(x**3)
    assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == I*pi - I*x**2 + O(x**3)
    assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == log(2) + log(x) + \
    x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
    assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -2*I*pi + log(2) + \
    log(x) - x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
    assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == -I*pi + log(2) + log(x) + \
    x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
    assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -I*pi + log(2) + log(x) - \
    x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
    assert log(sqrt(-I*x**2 - 3)*sqrt(-I*x**2 - 1) - 2)._eval_nseries(x, 3, None, 1) == -I*pi + \
    log(sqrt(3) + 2) + I*x**2*(-2 + 4*sqrt(3)/3) + O(x**3)
    assert log(-1/(1 - x))._eval_nseries(x, 3, None, 1) == I*pi + x + x**2/2 + O(x**3)
    assert log(-1/(1 - x))._eval_nseries(x, 3, None, -1) == I*pi + x + x**2/2 + O(x**3)


def test_log_series():
    # Note Series at infinities other than oo/-oo were introduced as a part of
    # pull request 23798. Refer https://github.com/sympy/sympy/pull/23798 for
    # more information.
    expr1 = log(1 + x)
    expr2 = log(x + sqrt(x**2 + 1))

    assert expr1.series(x, x0=I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x + \
    I*pi/2 - log(I/x) + O(x**(-4), (x, oo*I))
    assert expr1.series(x, x0=-I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x - \
    I*pi/2 - log(-I/x) + O(x**(-4), (x, -oo*I))
    assert expr2.series(x, x0=I*oo, n=4) == 1/(4*x**2) + I*pi/2 + log(2) - \
    log(I/x) + O(x**(-4), (x, oo*I))
    assert expr2.series(x, x0=-I*oo, n=4) == -1/(4*x**2) - I*pi/2 - log(2) + \
    log(-I/x) + O(x**(-4), (x, -oo*I))


def test_log_expand():
    w = Symbol("w", positive=True)
    e = log(w**(log(5)/log(3)))
    assert e.expand() == log(5)/log(3) * log(w)
    x, y, z = symbols('x,y,z', positive=True)
    assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
    assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
        2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
        log((log(y) + log(z))*log(x)) + log(2)]
    assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
    assert log(x**log(x**2)).expand() == 2*log(x)**2
    x, y = symbols('x,y')
    assert log(x*y).expand(force=True) == log(x) + log(y)
    assert log(x**y).expand(force=True) == y*log(x)
    assert log(exp(x)).expand(force=True) == x

    # there's generally no need to expand out logs since this requires
    # factoring and if simplification is sought, it's cheaper to put
    # logs together than it is to take them apart.
    assert log(2*3**2).expand() != 2*log(3) + log(2)


@XFAIL
def test_log_expand_fail():
    x, y, z = symbols('x,y,z', positive=True)
    assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log(
        x) + y*log(y + z) + z*log(x) + z*log(y + z)


def test_log_simplify():
    x = Symbol("x", positive=True)
    assert log(x**2).expand() == 2*log(x)
    assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)

    z = Symbol('z')
    assert log(sqrt(z)).expand() == log(z)/2
    assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
    assert log(z**(-1)).expand() != -log(z)
    assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)


def test_log_AccumBounds():
    assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
    assert log(AccumBounds(0, E)) == AccumBounds(-oo, 1)
    assert log(AccumBounds(-1, E)) == S.NaN
    assert log(AccumBounds(0, oo)) == AccumBounds(-oo, oo)
    assert log(AccumBounds(-oo, 0)) == S.NaN
    assert log(AccumBounds(-oo, oo)) == S.NaN


@_both_exp_pow
def test_lambertw():
    k = Symbol('k')

    assert LambertW(x, 0) == LambertW(x)
    assert LambertW(x, 0, evaluate=False) != LambertW(x)
    assert LambertW(0) == 0
    assert LambertW(E) == 1
    assert LambertW(-1/E) == -1
    assert LambertW(100*log(100)) == log(100)
    assert LambertW(-log(2)/2) == -log(2)
    assert LambertW(81*log(3)) == 3*log(3)
    assert LambertW(sqrt(E)/2) == S.Half
    assert LambertW(oo) is oo
    assert LambertW(0, 1) is -oo
    assert LambertW(0, 42) is -oo
    assert LambertW(-pi/2, -1) == -I*pi/2
    assert LambertW(-1/E, -1) == -1
    assert LambertW(-2*exp(-2), -1) == -2
    assert LambertW(2*log(2)) == log(2)
    assert LambertW(-pi/2) == I*pi/2
    assert LambertW(exp(1 + E)) == E

    assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
    assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))

    assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
        Float("0.701338383413663009202120278965", 30), 1e-29)
    assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))

    assert LambertW(-1).is_real is False  # issue 5215
    assert LambertW(2, evaluate=False).is_real
    p = Symbol('p', positive=True)
    assert LambertW(p, evaluate=False).is_real
    assert LambertW(p**(p+1)*log(p)) == p*log(p)
    assert LambertW(p - 1, evaluate=False).is_real is None
    assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
    assert LambertW(S.Half, -1, evaluate=False).is_real is False
    assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real
    assert LambertW(-10, -1, evaluate=False).is_real is False
    assert LambertW(-2, 2, evaluate=False).is_real is False

    assert LambertW(0, evaluate=False).is_algebraic
    na = Symbol('na', nonzero=True, algebraic=True)
    assert LambertW(na).is_algebraic is False
    assert LambertW(p).is_zero is False
    n = Symbol('n', negative=True)
    assert LambertW(n).is_zero is False


def test_issue_5673():
    e = LambertW(-1)
    assert e.is_comparable is False
    assert e.is_positive is not True
    e2 = 1 - 1/(1 - exp(-1000))
    assert e2.is_positive is not True
    e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
    assert e3.is_nonzero is not True


def test_log_fdiff():
    x = Symbol('x')
    raises(ArgumentIndexError, lambda: log(x).fdiff(2))


def test_log_taylor_term():
    x = symbols('x')
    assert log(x).taylor_term(0, x) == x
    assert log(x).taylor_term(1, x) == -x**2/2
    assert log(x).taylor_term(4, x) == x**5/5
    assert log(x).taylor_term(-1, x) is S.Zero


def test_exp_expand_NC():
    A, B, C = symbols('A,B,C', commutative=False)

    assert exp(A + B).expand() == exp(A + B)
    assert exp(A + B + C).expand() == exp(A + B + C)
    assert exp(x + y).expand() == exp(x)*exp(y)
    assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)


@_both_exp_pow
def test_as_numer_denom():
    n = symbols('n', negative=True)
    assert exp(x).as_numer_denom() == (exp(x), 1)
    assert exp(-x).as_numer_denom() == (1, exp(x))
    assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
    assert exp(-2).as_numer_denom() == (1, exp(2))
    assert exp(n).as_numer_denom() == (1, exp(-n))
    assert exp(-n).as_numer_denom() == (exp(-n), 1)
    assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
    assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
    assert exp(-n).as_numer_denom() == (exp(-n), 1)
    # Check noncommutativity
    a = symbols('a', commutative=False)
    assert exp(-a).as_numer_denom() == (exp(-a), 1)


@_both_exp_pow
def test_polar():
    x, y = symbols('x y', polar=True)

    assert abs(exp_polar(I*4)) == 1
    assert abs(exp_polar(0)) == 1
    assert abs(exp_polar(2 + 3*I)) == exp(2)
    assert exp_polar(I*10).n() == exp_polar(I*10)

    assert log(exp_polar(z)) == z
    assert log(x*y).expand() == log(x) + log(y)
    assert log(x**z).expand() == z*log(x)

    assert exp_polar(3).exp == 3

    # Compare exp(1.0*pi*I).
    assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0

    assert exp_polar(0).is_rational is True  # issue 8008


def test_exp_summation():
    w = symbols("w")
    m, n, i, j = symbols("m n i j")
    expr = exp(Sum(w*i, (i, 0, n), (j, 0, m)))
    assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m))


def test_log_product():
    from sympy.abc import n, m

    i, j = symbols('i,j', positive=True, integer=True)
    x, y = symbols('x,y', positive=True)
    z = symbols('z', real=True)
    w = symbols('w')

    expr = log(Product(x**i, (i, 1, n)))
    assert simplify(expr) == expr
    assert expr.expand() == Sum(i*log(x), (i, 1, n))
    expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
    assert simplify(expr) == expr
    assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))

    expr = log(Product(-2, (n, 0, 4)))
    assert simplify(expr) == expr
    assert expr.expand() == expr
    assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4))

    expr = log(Product(exp(z*i), (i, 0, n)))
    assert expr.expand() == Sum(z*i, (i, 0, n))

    expr = log(Product(exp(w*i), (i, 0, n)))
    assert expr.expand() == expr
    assert expr.expand(force=True) == Sum(w*i, (i, 0, n))

    expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m)))
    assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m))


@XFAIL
def test_log_product_simplify_to_sum():
    from sympy.abc import n, m
    i, j = symbols('i,j', positive=True, integer=True)
    x, y = symbols('x,y', positive=True)
    assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
    assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
            Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))


def test_issue_8866():
    assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
    assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))

    y = Symbol('y', positive=True)
    l1 = log(exp(y), exp(10))
    b1 = log(exp(y), exp(5))
    l2 = log(exp(y), exp(10), evaluate=False)
    b2 = log(exp(y), exp(5), evaluate=False)
    assert simplify(log(l1, b1)) == simplify(log(l2, b2))
    assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))


def test_log_expand_factor():
    assert (log(18)/log(3) - 2).expand(factor=True) == log(2)/log(3)
    assert (log(12)/log(2)).expand(factor=True) == log(3)/log(2) + 2
    assert (log(15)/log(3)).expand(factor=True) == 1 + log(5)/log(3)
    assert (log(2)/(-log(12) + log(24))).expand(factor=True) == 1

    assert expand_log(log(12), factor=True) == log(3) + 2*log(2)
    assert expand_log(log(21)/log(7), factor=False) == log(3)/log(7) + 1
    assert expand_log(log(45)/log(5) + log(20), factor=False) == \
        1 + 2*log(3)/log(5) + log(20)
    assert expand_log(log(45)/log(5) + log(26), factor=True) == \
        log(2) + log(13) + (log(5) + 2*log(3))/log(5)


def test_issue_9116():
    n = Symbol('n', positive=True, integer=True)
    assert log(n).is_nonnegative is True


def test_issue_18473():
    assert exp(x*log(cos(1/x))).as_leading_term(x) == S.NaN
    assert exp(x*log(tan(1/x))).as_leading_term(x) == S.NaN
    assert log(cos(1/x)).as_leading_term(x) == S.NaN
    assert log(tan(1/x)).as_leading_term(x) == S.NaN
    assert log(cos(1/x) + 2).as_leading_term(x) == AccumBounds(0, log(3))
    assert exp(x*log(cos(1/x) + 2)).as_leading_term(x) == 1
    assert log(cos(1/x) - 2).as_leading_term(x) == S.NaN
    assert exp(x*log(cos(1/x) - 2)).as_leading_term(x) == S.NaN
    assert log(cos(1/x) + 1).as_leading_term(x) == AccumBounds(-oo, log(2))
    assert exp(x*log(cos(1/x) + 1)).as_leading_term(x) == AccumBounds(0, 1)
    assert log(sin(1/x)**2).as_leading_term(x) == AccumBounds(-oo, 0)
    assert exp(x*log(sin(1/x)**2)).as_leading_term(x) == AccumBounds(0, 1)
    assert log(tan(1/x)**2).as_leading_term(x) == AccumBounds(-oo, oo)
    assert exp(2*x*(log(tan(1/x)**2))).as_leading_term(x) == AccumBounds(0, oo)