Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
6.68 kB
from sympy.assumptions.lra_satask import lra_satask
from sympy.logic.algorithms.lra_theory import UnhandledInput
from sympy.assumptions.ask import Q, ask
from sympy.core import symbols, Symbol
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.core.numbers import I
from sympy.testing.pytest import raises, XFAIL
x, y, z = symbols("x y z", real=True)
def test_lra_satask():
im = Symbol('im', imaginary=True)
# test preprocessing of unequalities is working correctly
assert lra_satask(Q.eq(x, 1), ~Q.ne(x, 0)) is False
assert lra_satask(Q.eq(x, 0), ~Q.ne(x, 0)) is True
assert lra_satask(~Q.ne(x, 0), Q.eq(x, 0)) is True
assert lra_satask(~Q.eq(x, 0), Q.eq(x, 0)) is False
assert lra_satask(Q.ne(x, 0), Q.eq(x, 0)) is False
# basic tests
assert lra_satask(Q.ne(x, x)) is False
assert lra_satask(Q.eq(x, x)) is True
assert lra_satask(Q.gt(x, 0), Q.gt(x, 1)) is True
# check that True/False are handled
assert lra_satask(Q.gt(x, 0), True) is None
assert raises(ValueError, lambda: lra_satask(Q.gt(x, 0), False))
# check imaginary numbers are correctly handled
# (im * I).is_real returns True so this is an edge case
raises(UnhandledInput, lambda: lra_satask(Q.gt(im * I, 0), Q.gt(im * I, 0)))
# check matrix inputs
X = MatrixSymbol("X", 2, 2)
raises(UnhandledInput, lambda: lra_satask(Q.lt(X, 2) & Q.gt(X, 3)))
def test_old_assumptions():
# test unhandled old assumptions
w = symbols("w")
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", rational=False, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", odd=True, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", even=True, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", prime=True, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", composite=True, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", integer=True, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
w = symbols("w", integer=False, real=True)
raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3)))
# test handled
w = symbols("w", positive=True, real=True)
assert lra_satask(Q.le(w, 0)) is False
assert lra_satask(Q.gt(w, 0)) is True
w = symbols("w", negative=True, real=True)
assert lra_satask(Q.lt(w, 0)) is True
assert lra_satask(Q.ge(w, 0)) is False
w = symbols("w", zero=True, real=True)
assert lra_satask(Q.eq(w, 0)) is True
assert lra_satask(Q.ne(w, 0)) is False
w = symbols("w", nonzero=True, real=True)
assert lra_satask(Q.ne(w, 0)) is True
assert lra_satask(Q.eq(w, 1)) is None
w = symbols("w", nonpositive=True, real=True)
assert lra_satask(Q.le(w, 0)) is True
assert lra_satask(Q.gt(w, 0)) is False
w = symbols("w", nonnegative=True, real=True)
assert lra_satask(Q.ge(w, 0)) is True
assert lra_satask(Q.lt(w, 0)) is False
def test_rel_queries():
assert ask(Q.lt(x, 2) & Q.gt(x, 3)) is False
assert ask(Q.positive(x - z), (x > y) & (y > z)) is True
assert ask(x + y > 2, (x < 0) & (y <0)) is False
assert ask(x > z, (x > y) & (y > z)) is True
def test_unhandled_queries():
X = MatrixSymbol("X", 2, 2)
assert ask(Q.lt(X, 2) & Q.gt(X, 3)) is None
def test_all_pred():
# test usable pred
assert lra_satask(Q.extended_positive(x), (x > 2)) is True
assert lra_satask(Q.positive_infinite(x)) is False
assert lra_satask(Q.negative_infinite(x)) is False
# test disallowed pred
raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.prime(x)))
raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.composite(x)))
raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.odd(x)))
raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.even(x)))
raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.integer(x)))
def test_number_line_properties():
# From:
# https://en.wikipedia.org/wiki/Inequality_(mathematics)#Properties_on_the_number_line
a, b, c = symbols("a b c", real=True)
# Transitivity
# If a <= b and b <= c, then a <= c.
assert ask(a <= c, (a <= b) & (b <= c)) is True
# If a <= b and b < c, then a < c.
assert ask(a < c, (a <= b) & (b < c)) is True
# If a < b and b <= c, then a < c.
assert ask(a < c, (a < b) & (b <= c)) is True
# Addition and subtraction
# If a <= b, then a + c <= b + c and a - c <= b - c.
assert ask(a + c <= b + c, a <= b) is True
assert ask(a - c <= b - c, a <= b) is True
@XFAIL
def test_failing_number_line_properties():
# From:
# https://en.wikipedia.org/wiki/Inequality_(mathematics)#Properties_on_the_number_line
a, b, c = symbols("a b c", real=True)
# Multiplication and division
# If a <= b and c > 0, then ac <= bc and a/c <= b/c. (True for non-zero c)
assert ask(a*c <= b*c, (a <= b) & (c > 0) & ~ Q.zero(c)) is True
assert ask(a/c <= b/c, (a <= b) & (c > 0) & ~ Q.zero(c)) is True
# If a <= b and c < 0, then ac >= bc and a/c >= b/c. (True for non-zero c)
assert ask(a*c >= b*c, (a <= b) & (c < 0) & ~ Q.zero(c)) is True
assert ask(a/c >= b/c, (a <= b) & (c < 0) & ~ Q.zero(c)) is True
# Additive inverse
# If a <= b, then -a >= -b.
assert ask(-a >= -b, a <= b) is True
# Multiplicative inverse
# For a, b that are both negative or both positive:
# If a <= b, then 1/a >= 1/b .
assert ask(1/a >= 1/b, (a <= b) & Q.positive(x) & Q.positive(b)) is True
assert ask(1/a >= 1/b, (a <= b) & Q.negative(x) & Q.negative(b)) is True
def test_equality():
# test symetry and reflexivity
assert ask(Q.eq(x, x)) is True
assert ask(Q.eq(y, x), Q.eq(x, y)) is True
assert ask(Q.eq(y, x), ~Q.eq(z, z) | Q.eq(x, y)) is True
# test transitivity
assert ask(Q.eq(x,z), Q.eq(x,y) & Q.eq(y,z)) is True
@XFAIL
def test_equality_failing():
# Note that implementing the substitution property of equality
# most likely requires a redesign of the new assumptions.
# See issue #25485 for why this is the case and general ideas
# about how things could be redesigned.
# test substitution property
assert ask(Q.prime(x), Q.eq(x, y) & Q.prime(y)) is True
assert ask(Q.real(x), Q.eq(x, y) & Q.real(y)) is True
assert ask(Q.imaginary(x), Q.eq(x, y) & Q.imaginary(y)) is True