from sympy.assumptions.lra_satask import lra_satask from sympy.logic.algorithms.lra_theory import UnhandledInput from sympy.assumptions.ask import Q, ask from sympy.core import symbols, Symbol from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.core.numbers import I from sympy.testing.pytest import raises, XFAIL x, y, z = symbols("x y z", real=True) def test_lra_satask(): im = Symbol('im', imaginary=True) # test preprocessing of unequalities is working correctly assert lra_satask(Q.eq(x, 1), ~Q.ne(x, 0)) is False assert lra_satask(Q.eq(x, 0), ~Q.ne(x, 0)) is True assert lra_satask(~Q.ne(x, 0), Q.eq(x, 0)) is True assert lra_satask(~Q.eq(x, 0), Q.eq(x, 0)) is False assert lra_satask(Q.ne(x, 0), Q.eq(x, 0)) is False # basic tests assert lra_satask(Q.ne(x, x)) is False assert lra_satask(Q.eq(x, x)) is True assert lra_satask(Q.gt(x, 0), Q.gt(x, 1)) is True # check that True/False are handled assert lra_satask(Q.gt(x, 0), True) is None assert raises(ValueError, lambda: lra_satask(Q.gt(x, 0), False)) # check imaginary numbers are correctly handled # (im * I).is_real returns True so this is an edge case raises(UnhandledInput, lambda: lra_satask(Q.gt(im * I, 0), Q.gt(im * I, 0))) # check matrix inputs X = MatrixSymbol("X", 2, 2) raises(UnhandledInput, lambda: lra_satask(Q.lt(X, 2) & Q.gt(X, 3))) def test_old_assumptions(): # test unhandled old assumptions w = symbols("w") raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", rational=False, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", odd=True, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", even=True, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", prime=True, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", composite=True, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", integer=True, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) w = symbols("w", integer=False, real=True) raises(UnhandledInput, lambda: lra_satask(Q.lt(w, 2) & Q.gt(w, 3))) # test handled w = symbols("w", positive=True, real=True) assert lra_satask(Q.le(w, 0)) is False assert lra_satask(Q.gt(w, 0)) is True w = symbols("w", negative=True, real=True) assert lra_satask(Q.lt(w, 0)) is True assert lra_satask(Q.ge(w, 0)) is False w = symbols("w", zero=True, real=True) assert lra_satask(Q.eq(w, 0)) is True assert lra_satask(Q.ne(w, 0)) is False w = symbols("w", nonzero=True, real=True) assert lra_satask(Q.ne(w, 0)) is True assert lra_satask(Q.eq(w, 1)) is None w = symbols("w", nonpositive=True, real=True) assert lra_satask(Q.le(w, 0)) is True assert lra_satask(Q.gt(w, 0)) is False w = symbols("w", nonnegative=True, real=True) assert lra_satask(Q.ge(w, 0)) is True assert lra_satask(Q.lt(w, 0)) is False def test_rel_queries(): assert ask(Q.lt(x, 2) & Q.gt(x, 3)) is False assert ask(Q.positive(x - z), (x > y) & (y > z)) is True assert ask(x + y > 2, (x < 0) & (y <0)) is False assert ask(x > z, (x > y) & (y > z)) is True def test_unhandled_queries(): X = MatrixSymbol("X", 2, 2) assert ask(Q.lt(X, 2) & Q.gt(X, 3)) is None def test_all_pred(): # test usable pred assert lra_satask(Q.extended_positive(x), (x > 2)) is True assert lra_satask(Q.positive_infinite(x)) is False assert lra_satask(Q.negative_infinite(x)) is False # test disallowed pred raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.prime(x))) raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.composite(x))) raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.odd(x))) raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.even(x))) raises(UnhandledInput, lambda: lra_satask((x > 0), (x > 2) & Q.integer(x))) def test_number_line_properties(): # From: # https://en.wikipedia.org/wiki/Inequality_(mathematics)#Properties_on_the_number_line a, b, c = symbols("a b c", real=True) # Transitivity # If a <= b and b <= c, then a <= c. assert ask(a <= c, (a <= b) & (b <= c)) is True # If a <= b and b < c, then a < c. assert ask(a < c, (a <= b) & (b < c)) is True # If a < b and b <= c, then a < c. assert ask(a < c, (a < b) & (b <= c)) is True # Addition and subtraction # If a <= b, then a + c <= b + c and a - c <= b - c. assert ask(a + c <= b + c, a <= b) is True assert ask(a - c <= b - c, a <= b) is True @XFAIL def test_failing_number_line_properties(): # From: # https://en.wikipedia.org/wiki/Inequality_(mathematics)#Properties_on_the_number_line a, b, c = symbols("a b c", real=True) # Multiplication and division # If a <= b and c > 0, then ac <= bc and a/c <= b/c. (True for non-zero c) assert ask(a*c <= b*c, (a <= b) & (c > 0) & ~ Q.zero(c)) is True assert ask(a/c <= b/c, (a <= b) & (c > 0) & ~ Q.zero(c)) is True # If a <= b and c < 0, then ac >= bc and a/c >= b/c. (True for non-zero c) assert ask(a*c >= b*c, (a <= b) & (c < 0) & ~ Q.zero(c)) is True assert ask(a/c >= b/c, (a <= b) & (c < 0) & ~ Q.zero(c)) is True # Additive inverse # If a <= b, then -a >= -b. assert ask(-a >= -b, a <= b) is True # Multiplicative inverse # For a, b that are both negative or both positive: # If a <= b, then 1/a >= 1/b . assert ask(1/a >= 1/b, (a <= b) & Q.positive(x) & Q.positive(b)) is True assert ask(1/a >= 1/b, (a <= b) & Q.negative(x) & Q.negative(b)) is True def test_equality(): # test symetry and reflexivity assert ask(Q.eq(x, x)) is True assert ask(Q.eq(y, x), Q.eq(x, y)) is True assert ask(Q.eq(y, x), ~Q.eq(z, z) | Q.eq(x, y)) is True # test transitivity assert ask(Q.eq(x,z), Q.eq(x,y) & Q.eq(y,z)) is True @XFAIL def test_equality_failing(): # Note that implementing the substitution property of equality # most likely requires a redesign of the new assumptions. # See issue #25485 for why this is the case and general ideas # about how things could be redesigned. # test substitution property assert ask(Q.prime(x), Q.eq(x, y) & Q.prime(y)) is True assert ask(Q.real(x), Q.eq(x, y) & Q.real(y)) is True assert ask(Q.imaginary(x), Q.eq(x, y) & Q.imaginary(y)) is True