Spaces:
Running
Running
""" | |
Module to evaluate the proposition with assumptions using SAT algorithm. | |
""" | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.core.kind import NumberKind, UndefinedKind | |
from sympy.assumptions.ask_generated import get_all_known_matrix_facts, get_all_known_number_facts | |
from sympy.assumptions.assume import global_assumptions, AppliedPredicate | |
from sympy.assumptions.sathandlers import class_fact_registry | |
from sympy.core import oo | |
from sympy.logic.inference import satisfiable | |
from sympy.assumptions.cnf import CNF, EncodedCNF | |
from sympy.matrices.kind import MatrixKind | |
def satask(proposition, assumptions=True, context=global_assumptions, | |
use_known_facts=True, iterations=oo): | |
""" | |
Function to evaluate the proposition with assumptions using SAT algorithm. | |
This function extracts every fact relevant to the expressions composing | |
proposition and assumptions. For example, if a predicate containing | |
``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))`` | |
will be found and passed to SAT solver because ``Q.nonnegative`` is | |
registered as a fact for ``Abs``. | |
Proposition is evaluated to ``True`` or ``False`` if the truth value can be | |
determined. If not, ``None`` is returned. | |
Parameters | |
========== | |
proposition : Any boolean expression. | |
Proposition which will be evaluated to boolean value. | |
assumptions : Any boolean expression, optional. | |
Local assumptions to evaluate the *proposition*. | |
context : AssumptionsContext, optional. | |
Default assumptions to evaluate the *proposition*. By default, | |
this is ``sympy.assumptions.global_assumptions`` variable. | |
use_known_facts : bool, optional. | |
If ``True``, facts from ``sympy.assumptions.ask_generated`` | |
module are passed to SAT solver as well. | |
iterations : int, optional. | |
Number of times that relevant facts are recursively extracted. | |
Default is infinite times until no new fact is found. | |
Returns | |
======= | |
``True``, ``False``, or ``None`` | |
Examples | |
======== | |
>>> from sympy import Abs, Q | |
>>> from sympy.assumptions.satask import satask | |
>>> from sympy.abc import x | |
>>> satask(Q.zero(Abs(x)), Q.zero(x)) | |
True | |
""" | |
props = CNF.from_prop(proposition) | |
_props = CNF.from_prop(~proposition) | |
assumptions = CNF.from_prop(assumptions) | |
context_cnf = CNF() | |
if context: | |
context_cnf = context_cnf.extend(context) | |
sat = get_all_relevant_facts(props, assumptions, context_cnf, | |
use_known_facts=use_known_facts, iterations=iterations) | |
sat.add_from_cnf(assumptions) | |
if context: | |
sat.add_from_cnf(context_cnf) | |
return check_satisfiability(props, _props, sat) | |
def check_satisfiability(prop, _prop, factbase): | |
sat_true = factbase.copy() | |
sat_false = factbase.copy() | |
sat_true.add_from_cnf(prop) | |
sat_false.add_from_cnf(_prop) | |
can_be_true = satisfiable(sat_true) | |
can_be_false = satisfiable(sat_false) | |
if can_be_true and can_be_false: | |
return None | |
if can_be_true and not can_be_false: | |
return True | |
if not can_be_true and can_be_false: | |
return False | |
if not can_be_true and not can_be_false: | |
# TODO: Run additional checks to see which combination of the | |
# assumptions, global_assumptions, and relevant_facts are | |
# inconsistent. | |
raise ValueError("Inconsistent assumptions") | |
def extract_predargs(proposition, assumptions=None, context=None): | |
""" | |
Extract every expression in the argument of predicates from *proposition*, | |
*assumptions* and *context*. | |
Parameters | |
========== | |
proposition : sympy.assumptions.cnf.CNF | |
assumptions : sympy.assumptions.cnf.CNF, optional. | |
context : sympy.assumptions.cnf.CNF, optional. | |
CNF generated from assumptions context. | |
Examples | |
======== | |
>>> from sympy import Q, Abs | |
>>> from sympy.assumptions.cnf import CNF | |
>>> from sympy.assumptions.satask import extract_predargs | |
>>> from sympy.abc import x, y | |
>>> props = CNF.from_prop(Q.zero(Abs(x*y))) | |
>>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y)) | |
>>> extract_predargs(props, assump) | |
{x, y, Abs(x*y)} | |
""" | |
req_keys = find_symbols(proposition) | |
keys = proposition.all_predicates() | |
# XXX: We need this since True/False are not Basic | |
lkeys = set() | |
if assumptions: | |
lkeys |= assumptions.all_predicates() | |
if context: | |
lkeys |= context.all_predicates() | |
lkeys = lkeys - {S.true, S.false} | |
tmp_keys = None | |
while tmp_keys != set(): | |
tmp = set() | |
for l in lkeys: | |
syms = find_symbols(l) | |
if (syms & req_keys) != set(): | |
tmp |= syms | |
tmp_keys = tmp - req_keys | |
req_keys |= tmp_keys | |
keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()} | |
exprs = set() | |
for key in keys: | |
if isinstance(key, AppliedPredicate): | |
exprs |= set(key.arguments) | |
else: | |
exprs.add(key) | |
return exprs | |
def find_symbols(pred): | |
""" | |
Find every :obj:`~.Symbol` in *pred*. | |
Parameters | |
========== | |
pred : sympy.assumptions.cnf.CNF, or any Expr. | |
""" | |
if isinstance(pred, CNF): | |
symbols = set() | |
for a in pred.all_predicates(): | |
symbols |= find_symbols(a) | |
return symbols | |
return pred.atoms(Symbol) | |
def get_relevant_clsfacts(exprs, relevant_facts=None): | |
""" | |
Extract relevant facts from the items in *exprs*. Facts are defined in | |
``assumptions.sathandlers`` module. | |
This function is recursively called by ``get_all_relevant_facts()``. | |
Parameters | |
========== | |
exprs : set | |
Expressions whose relevant facts are searched. | |
relevant_facts : sympy.assumptions.cnf.CNF, optional. | |
Pre-discovered relevant facts. | |
Returns | |
======= | |
exprs : set | |
Candidates for next relevant fact searching. | |
relevant_facts : sympy.assumptions.cnf.CNF | |
Updated relevant facts. | |
Examples | |
======== | |
Here, we will see how facts relevant to ``Abs(x*y)`` are recursively | |
extracted. On the first run, set containing the expression is passed | |
without pre-discovered relevant facts. The result is a set containing | |
candidates for next run, and ``CNF()`` instance containing facts | |
which are relevant to ``Abs`` and its argument. | |
>>> from sympy import Abs | |
>>> from sympy.assumptions.satask import get_relevant_clsfacts | |
>>> from sympy.abc import x, y | |
>>> exprs = {Abs(x*y)} | |
>>> exprs, facts = get_relevant_clsfacts(exprs) | |
>>> exprs | |
{x*y} | |
>>> facts.clauses #doctest: +SKIP | |
{frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}), | |
frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}), | |
frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}), | |
frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}), | |
frozenset({Literal(Q.even(Abs(x*y)), False), | |
Literal(Q.odd(Abs(x*y)), False), | |
Literal(Q.odd(x*y), True)}), | |
frozenset({Literal(Q.even(Abs(x*y)), False), | |
Literal(Q.even(x*y), True), | |
Literal(Q.odd(Abs(x*y)), False)}), | |
frozenset({Literal(Q.positive(Abs(x*y)), False), | |
Literal(Q.zero(Abs(x*y)), False)})} | |
We pass the first run's results to the second run, and get the expressions | |
for next run and updated facts. | |
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) | |
>>> exprs | |
{x, y} | |
On final run, no more candidate is returned thus we know that all | |
relevant facts are successfully retrieved. | |
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) | |
>>> exprs | |
set() | |
""" | |
if not relevant_facts: | |
relevant_facts = CNF() | |
newexprs = set() | |
for expr in exprs: | |
for fact in class_fact_registry(expr): | |
newfact = CNF.to_CNF(fact) | |
relevant_facts = relevant_facts._and(newfact) | |
for key in newfact.all_predicates(): | |
if isinstance(key, AppliedPredicate): | |
newexprs |= set(key.arguments) | |
return newexprs - exprs, relevant_facts | |
def get_all_relevant_facts(proposition, assumptions, context, | |
use_known_facts=True, iterations=oo): | |
""" | |
Extract all relevant facts from *proposition* and *assumptions*. | |
This function extracts the facts by recursively calling | |
``get_relevant_clsfacts()``. Extracted facts are converted to | |
``EncodedCNF`` and returned. | |
Parameters | |
========== | |
proposition : sympy.assumptions.cnf.CNF | |
CNF generated from proposition expression. | |
assumptions : sympy.assumptions.cnf.CNF | |
CNF generated from assumption expression. | |
context : sympy.assumptions.cnf.CNF | |
CNF generated from assumptions context. | |
use_known_facts : bool, optional. | |
If ``True``, facts from ``sympy.assumptions.ask_generated`` | |
module are encoded as well. | |
iterations : int, optional. | |
Number of times that relevant facts are recursively extracted. | |
Default is infinite times until no new fact is found. | |
Returns | |
======= | |
sympy.assumptions.cnf.EncodedCNF | |
Examples | |
======== | |
>>> from sympy import Q | |
>>> from sympy.assumptions.cnf import CNF | |
>>> from sympy.assumptions.satask import get_all_relevant_facts | |
>>> from sympy.abc import x, y | |
>>> props = CNF.from_prop(Q.nonzero(x*y)) | |
>>> assump = CNF.from_prop(Q.nonzero(x)) | |
>>> context = CNF.from_prop(Q.nonzero(y)) | |
>>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP | |
<sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0> | |
""" | |
# The relevant facts might introduce new keys, e.g., Q.zero(x*y) will | |
# introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until | |
# we stop getting new things. Hopefully this strategy won't lead to an | |
# infinite loop in the future. | |
i = 0 | |
relevant_facts = CNF() | |
all_exprs = set() | |
while True: | |
if i == 0: | |
exprs = extract_predargs(proposition, assumptions, context) | |
all_exprs |= exprs | |
exprs, relevant_facts = get_relevant_clsfacts(exprs, relevant_facts) | |
i += 1 | |
if i >= iterations: | |
break | |
if not exprs: | |
break | |
if use_known_facts: | |
known_facts_CNF = CNF() | |
if any(expr.kind == MatrixKind(NumberKind) for expr in all_exprs): | |
known_facts_CNF.add_clauses(get_all_known_matrix_facts()) | |
# check for undefinedKind since kind system isn't fully implemented | |
if any(((expr.kind == NumberKind) or (expr.kind == UndefinedKind)) for expr in all_exprs): | |
known_facts_CNF.add_clauses(get_all_known_number_facts()) | |
kf_encoded = EncodedCNF() | |
kf_encoded.from_cnf(known_facts_CNF) | |
def translate_literal(lit, delta): | |
if lit > 0: | |
return lit + delta | |
else: | |
return lit - delta | |
def translate_data(data, delta): | |
return [{translate_literal(i, delta) for i in clause} for clause in data] | |
data = [] | |
symbols = [] | |
n_lit = len(kf_encoded.symbols) | |
for i, expr in enumerate(all_exprs): | |
symbols += [pred(expr) for pred in kf_encoded.symbols] | |
data += translate_data(kf_encoded.data, i * n_lit) | |
encoding = dict(list(zip(symbols, range(1, len(symbols)+1)))) | |
ctx = EncodedCNF(data, encoding) | |
else: | |
ctx = EncodedCNF() | |
ctx.add_from_cnf(relevant_facts) | |
return ctx | |