Spaces:
Running
Running
File size: 11,745 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
"""
Module to evaluate the proposition with assumptions using SAT algorithm.
"""
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.assumptions.ask_generated import get_all_known_matrix_facts, get_all_known_number_facts
from sympy.assumptions.assume import global_assumptions, AppliedPredicate
from sympy.assumptions.sathandlers import class_fact_registry
from sympy.core import oo
from sympy.logic.inference import satisfiable
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.matrices.kind import MatrixKind
def satask(proposition, assumptions=True, context=global_assumptions,
use_known_facts=True, iterations=oo):
"""
Function to evaluate the proposition with assumptions using SAT algorithm.
This function extracts every fact relevant to the expressions composing
proposition and assumptions. For example, if a predicate containing
``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))``
will be found and passed to SAT solver because ``Q.nonnegative`` is
registered as a fact for ``Abs``.
Proposition is evaluated to ``True`` or ``False`` if the truth value can be
determined. If not, ``None`` is returned.
Parameters
==========
proposition : Any boolean expression.
Proposition which will be evaluated to boolean value.
assumptions : Any boolean expression, optional.
Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional.
Default assumptions to evaluate the *proposition*. By default,
this is ``sympy.assumptions.global_assumptions`` variable.
use_known_facts : bool, optional.
If ``True``, facts from ``sympy.assumptions.ask_generated``
module are passed to SAT solver as well.
iterations : int, optional.
Number of times that relevant facts are recursively extracted.
Default is infinite times until no new fact is found.
Returns
=======
``True``, ``False``, or ``None``
Examples
========
>>> from sympy import Abs, Q
>>> from sympy.assumptions.satask import satask
>>> from sympy.abc import x
>>> satask(Q.zero(Abs(x)), Q.zero(x))
True
"""
props = CNF.from_prop(proposition)
_props = CNF.from_prop(~proposition)
assumptions = CNF.from_prop(assumptions)
context_cnf = CNF()
if context:
context_cnf = context_cnf.extend(context)
sat = get_all_relevant_facts(props, assumptions, context_cnf,
use_known_facts=use_known_facts, iterations=iterations)
sat.add_from_cnf(assumptions)
if context:
sat.add_from_cnf(context_cnf)
return check_satisfiability(props, _props, sat)
def check_satisfiability(prop, _prop, factbase):
sat_true = factbase.copy()
sat_false = factbase.copy()
sat_true.add_from_cnf(prop)
sat_false.add_from_cnf(_prop)
can_be_true = satisfiable(sat_true)
can_be_false = satisfiable(sat_false)
if can_be_true and can_be_false:
return None
if can_be_true and not can_be_false:
return True
if not can_be_true and can_be_false:
return False
if not can_be_true and not can_be_false:
# TODO: Run additional checks to see which combination of the
# assumptions, global_assumptions, and relevant_facts are
# inconsistent.
raise ValueError("Inconsistent assumptions")
def extract_predargs(proposition, assumptions=None, context=None):
"""
Extract every expression in the argument of predicates from *proposition*,
*assumptions* and *context*.
Parameters
==========
proposition : sympy.assumptions.cnf.CNF
assumptions : sympy.assumptions.cnf.CNF, optional.
context : sympy.assumptions.cnf.CNF, optional.
CNF generated from assumptions context.
Examples
========
>>> from sympy import Q, Abs
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.satask import extract_predargs
>>> from sympy.abc import x, y
>>> props = CNF.from_prop(Q.zero(Abs(x*y)))
>>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y))
>>> extract_predargs(props, assump)
{x, y, Abs(x*y)}
"""
req_keys = find_symbols(proposition)
keys = proposition.all_predicates()
# XXX: We need this since True/False are not Basic
lkeys = set()
if assumptions:
lkeys |= assumptions.all_predicates()
if context:
lkeys |= context.all_predicates()
lkeys = lkeys - {S.true, S.false}
tmp_keys = None
while tmp_keys != set():
tmp = set()
for l in lkeys:
syms = find_symbols(l)
if (syms & req_keys) != set():
tmp |= syms
tmp_keys = tmp - req_keys
req_keys |= tmp_keys
keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()}
exprs = set()
for key in keys:
if isinstance(key, AppliedPredicate):
exprs |= set(key.arguments)
else:
exprs.add(key)
return exprs
def find_symbols(pred):
"""
Find every :obj:`~.Symbol` in *pred*.
Parameters
==========
pred : sympy.assumptions.cnf.CNF, or any Expr.
"""
if isinstance(pred, CNF):
symbols = set()
for a in pred.all_predicates():
symbols |= find_symbols(a)
return symbols
return pred.atoms(Symbol)
def get_relevant_clsfacts(exprs, relevant_facts=None):
"""
Extract relevant facts from the items in *exprs*. Facts are defined in
``assumptions.sathandlers`` module.
This function is recursively called by ``get_all_relevant_facts()``.
Parameters
==========
exprs : set
Expressions whose relevant facts are searched.
relevant_facts : sympy.assumptions.cnf.CNF, optional.
Pre-discovered relevant facts.
Returns
=======
exprs : set
Candidates for next relevant fact searching.
relevant_facts : sympy.assumptions.cnf.CNF
Updated relevant facts.
Examples
========
Here, we will see how facts relevant to ``Abs(x*y)`` are recursively
extracted. On the first run, set containing the expression is passed
without pre-discovered relevant facts. The result is a set containing
candidates for next run, and ``CNF()`` instance containing facts
which are relevant to ``Abs`` and its argument.
>>> from sympy import Abs
>>> from sympy.assumptions.satask import get_relevant_clsfacts
>>> from sympy.abc import x, y
>>> exprs = {Abs(x*y)}
>>> exprs, facts = get_relevant_clsfacts(exprs)
>>> exprs
{x*y}
>>> facts.clauses #doctest: +SKIP
{frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.odd(Abs(x*y)), False),
Literal(Q.odd(x*y), True)}),
frozenset({Literal(Q.even(Abs(x*y)), False),
Literal(Q.even(x*y), True),
Literal(Q.odd(Abs(x*y)), False)}),
frozenset({Literal(Q.positive(Abs(x*y)), False),
Literal(Q.zero(Abs(x*y)), False)})}
We pass the first run's results to the second run, and get the expressions
for next run and updated facts.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
>>> exprs
{x, y}
On final run, no more candidate is returned thus we know that all
relevant facts are successfully retrieved.
>>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts)
>>> exprs
set()
"""
if not relevant_facts:
relevant_facts = CNF()
newexprs = set()
for expr in exprs:
for fact in class_fact_registry(expr):
newfact = CNF.to_CNF(fact)
relevant_facts = relevant_facts._and(newfact)
for key in newfact.all_predicates():
if isinstance(key, AppliedPredicate):
newexprs |= set(key.arguments)
return newexprs - exprs, relevant_facts
def get_all_relevant_facts(proposition, assumptions, context,
use_known_facts=True, iterations=oo):
"""
Extract all relevant facts from *proposition* and *assumptions*.
This function extracts the facts by recursively calling
``get_relevant_clsfacts()``. Extracted facts are converted to
``EncodedCNF`` and returned.
Parameters
==========
proposition : sympy.assumptions.cnf.CNF
CNF generated from proposition expression.
assumptions : sympy.assumptions.cnf.CNF
CNF generated from assumption expression.
context : sympy.assumptions.cnf.CNF
CNF generated from assumptions context.
use_known_facts : bool, optional.
If ``True``, facts from ``sympy.assumptions.ask_generated``
module are encoded as well.
iterations : int, optional.
Number of times that relevant facts are recursively extracted.
Default is infinite times until no new fact is found.
Returns
=======
sympy.assumptions.cnf.EncodedCNF
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.satask import get_all_relevant_facts
>>> from sympy.abc import x, y
>>> props = CNF.from_prop(Q.nonzero(x*y))
>>> assump = CNF.from_prop(Q.nonzero(x))
>>> context = CNF.from_prop(Q.nonzero(y))
>>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP
<sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0>
"""
# The relevant facts might introduce new keys, e.g., Q.zero(x*y) will
# introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until
# we stop getting new things. Hopefully this strategy won't lead to an
# infinite loop in the future.
i = 0
relevant_facts = CNF()
all_exprs = set()
while True:
if i == 0:
exprs = extract_predargs(proposition, assumptions, context)
all_exprs |= exprs
exprs, relevant_facts = get_relevant_clsfacts(exprs, relevant_facts)
i += 1
if i >= iterations:
break
if not exprs:
break
if use_known_facts:
known_facts_CNF = CNF()
if any(expr.kind == MatrixKind(NumberKind) for expr in all_exprs):
known_facts_CNF.add_clauses(get_all_known_matrix_facts())
# check for undefinedKind since kind system isn't fully implemented
if any(((expr.kind == NumberKind) or (expr.kind == UndefinedKind)) for expr in all_exprs):
known_facts_CNF.add_clauses(get_all_known_number_facts())
kf_encoded = EncodedCNF()
kf_encoded.from_cnf(known_facts_CNF)
def translate_literal(lit, delta):
if lit > 0:
return lit + delta
else:
return lit - delta
def translate_data(data, delta):
return [{translate_literal(i, delta) for i in clause} for clause in data]
data = []
symbols = []
n_lit = len(kf_encoded.symbols)
for i, expr in enumerate(all_exprs):
symbols += [pred(expr) for pred in kf_encoded.symbols]
data += translate_data(kf_encoded.data, i * n_lit)
encoding = dict(list(zip(symbols, range(1, len(symbols)+1))))
ctx = EncodedCNF(data, encoding)
else:
ctx = EncodedCNF()
ctx.add_from_cnf(relevant_facts)
return ctx
|