Spaces:
Sleeping
Sleeping
| import copy | |
| import os | |
| import time | |
| from functools import lru_cache, partial | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import pyarrow as pa | |
| import pyarrow.parquet as pq | |
| from tqdm.contrib.concurrent import thread_map | |
| from fastapi import FastAPI, Response | |
| import uvicorn | |
| from hffs.fs import HfFileSystem | |
| from datasets import Features, Image, Audio, Sequence | |
| from typing import List, Tuple, Callable | |
| from utils import ndarray_to_base64, clean_up_df, create_statistic, create_plot, get_question_info | |
| from comm_utils import save_to_file, send_msg_to_server, save_score | |
| from config import * | |
| class AppError(RuntimeError): | |
| pass | |
| APP_URL = "http://127.0.0.1:7860" if os.getenv("DEV") else "https://Kamarov-lotsa-explorer.hf.space" | |
| PAGE_SIZE = 1 | |
| MAX_CACHED_BLOBS = PAGE_SIZE * 10 | |
| TIME_PLOTS_NUM = 1 | |
| _blobs_cache = {} | |
| ##################################################### | |
| # Define routes for image and audio files | |
| ##################################################### | |
| app = FastAPI() | |
| def image(id: str): | |
| blob = get_blob(id) | |
| return Response(content=blob, media_type="image/png") | |
| def audio(id: str): | |
| blob = get_blob(id) | |
| return Response(content=blob, media_type="audio/wav") | |
| def push_blob(blob: bytes, blob_id: str) -> str: | |
| global _blobs_cache | |
| if blob_id in _blobs_cache: | |
| del _blobs_cache[blob_id] | |
| _blobs_cache[blob_id] = blob | |
| if len(_blobs_cache) > MAX_CACHED_BLOBS: | |
| del _blobs_cache[next(iter(_blobs_cache))] | |
| return blob_id | |
| def get_blob(blob_id: str) -> bytes: | |
| global _blobs_cache | |
| return _blobs_cache[blob_id] | |
| def blobs_to_urls(blobs: List[bytes], type: str, prefix: str) -> List[str]: | |
| image_blob_ids = [push_blob(blob, f"{prefix}-{i}") for i, blob in enumerate(blobs)] | |
| return [APP_URL + f"/{type}?id={blob_id}" for blob_id in image_blob_ids] | |
| ##################################################### | |
| # List configs, splits and parquet files | |
| ##################################################### | |
| def get_parquet_fs(dataset: str) -> HfFileSystem: | |
| try: | |
| fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet") | |
| if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")): | |
| raise AppError(f"Parquet export doesn't exist for '{dataset}'.") | |
| return fs | |
| except: | |
| raise AppError(f"Parquet export doesn't exist for '{dataset}'.") | |
| def get_parquet_configs(dataset: str) -> List[str]: | |
| fs = get_parquet_fs(dataset) | |
| return [path for path in fs.ls("") if fs.isdir(path)] | |
| def _sorted_split_key(split: str) -> str: | |
| return split if not split.startswith("train") else chr(0) + split # always "train" first | |
| def get_parquet_splits(dataset: str, config: str) -> List[str]: | |
| fs = get_parquet_fs(dataset) | |
| return [path.split("/")[1] for path in fs.ls(config) if fs.isdir(path)] | |
| ##################################################### | |
| # Index and query Parquet data | |
| ##################################################### | |
| RowGroupReaders = List[Callable[[], pa.Table]] | |
| def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, Features]: | |
| fs = get_parquet_fs(dataset) | |
| sources = fs.glob(f"{config}/{split}/*.parquet") | |
| if not sources: | |
| if config not in get_parquet_configs(dataset): | |
| raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.") | |
| else: | |
| raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.") | |
| desc = f"{dataset}/{config}/{split}" | |
| all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources, desc=desc, unit="pq") | |
| features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema()) | |
| rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)]) | |
| rg_readers = [partial(pf.read_row_group, i) for pf in all_pf for i in range(pf.metadata.num_row_groups)] | |
| max_page = 1 + (rg_offsets[-1] - 1) // PAGE_SIZE | |
| return rg_offsets, rg_readers, max_page, features | |
| def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame: | |
| start_row, end_row = (page - 1) * page_size, min(page * page_size, rg_offsets[-1] - 1) # both included | |
| # rg_offsets[start_rg - 1] <= start_row < rg_offsets[start_rg] | |
| # rg_offsets[end_rg - 1] <= end_row < rg_offsets[end_rg] | |
| start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right") # both included | |
| t = time.time() | |
| # TODO:性能瓶颈 | |
| pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)]) | |
| print(f"concat_tables time: {time.time()-t}") | |
| offset = start_row - (rg_offsets[start_rg - 1] if start_rg > 0 else 0) | |
| pa_table = pa_table.slice(offset, page_size) | |
| return pa_table.to_pandas() | |
| def sanitize_inputs(dataset: str, config: str, split: str, page: str) -> Tuple[str, str, str, int]: | |
| try: | |
| page = int(page) | |
| assert page > 0 | |
| except: | |
| raise AppError(f"Bad page: {page}") | |
| if not dataset: | |
| raise AppError("Empty dataset name") | |
| if not config: | |
| raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.") | |
| if not split: | |
| raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.") | |
| return dataset, config, split, int(page) | |
| def get_page_df(dataset: str, config: str, split: str, page: str) -> Tuple[pd.DataFrame, int, Features]: | |
| dataset, config, split, page = sanitize_inputs(dataset, config, split, page) | |
| rg_offsets, rg_readers, max_page, features = index(dataset, config, split) | |
| if page > max_page: | |
| raise AppError(f"Page {page} does not exist") | |
| df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers) | |
| return df, max_page, features | |
| ##################################################### | |
| # Format results | |
| ##################################################### | |
| def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]: | |
| df_, max_page, features = get_page_df(dataset, config, split, page) | |
| df = copy.deepcopy(df_) | |
| unsupported_columns = [] | |
| if dataset == TARGET_DATASET: | |
| # 对Salesforce/lotsa_data数据集进行特殊处理 | |
| info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
| return df, max_page, info | |
| elif dataset == BENCHMARK_DATASET: | |
| # 对YY26/TS_DATASETS数据集进行特殊处理 | |
| info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
| return df, max_page, info | |
| else: | |
| # 其他数据集保留原有逻辑 | |
| for column, feature in features.items(): | |
| if isinstance(feature, Image): | |
| blob_type = "image" # TODO: support audio - right now it seems that the markdown renderer in gradio doesn't support audio and shows nothing | |
| blob_urls = blobs_to_urls([item.get("bytes") if isinstance(item, dict) else None for item in df[column]], blob_type, prefix=f"{dataset}-{config}-{split}-{page}-{column}") | |
| df = df.drop([column], axis=1) | |
| df[column] = [f"" for url in blob_urls] | |
| elif any(bad_type in str(feature) for bad_type in ["Image(", "Audio(", "'binary'"]): | |
| unsupported_columns.append(column) | |
| df = df.drop([column], axis=1) | |
| elif isinstance(feature, Sequence): | |
| if feature.feature.dtype == 'float32': | |
| # 直接将内容绘图,并嵌入为Base64编码 | |
| base64_srcs = [ndarray_to_base64(vec) for vec in df[column]] | |
| df = df.drop([column], axis=1) | |
| df[column] = [f"" for src in base64_srcs] | |
| info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
| return df.reset_index().to_markdown(index=False), max_page, info | |
| ##################################################### | |
| # Process data | |
| ##################################################### | |
| def process_salesforce_data(dataset: str, config: str, split: str, page: List[str], sub_targets: List[int|str]) -> Tuple[List[pd.DataFrame], List[str]]: | |
| df_list, id_list = [], [] | |
| for i, page in enumerate(page): | |
| df, max_page, info = get_page(dataset, config, split, page) | |
| global tot_samples, tot_targets | |
| tot_samples, tot_targets = max_page, len(df['target'][0]) if isinstance(df['target'][0], np.ndarray) and df['target'][0].dtype == 'O' else 1 | |
| if 'all' in sub_targets: | |
| sub_targets = [i for i in range(tot_targets)] | |
| df = clean_up_df(df, sub_targets, SUBTARGET_MEANING_MAP[config]) | |
| row = df.iloc[0] | |
| id_list.append(row['item_id']) | |
| # 将单行的DataFrame展开为新的DataFrame | |
| df_without_index = row.drop('item_id').to_frame().T | |
| df_expanded = df_without_index.apply(pd.Series.explode).reset_index(drop=True).fillna(0) | |
| df_list.append(df_expanded) | |
| return df_list, id_list | |
| ##################################################### | |
| # Gradio app | |
| ##################################################### | |
| with gr.Blocks() as demo: | |
| # 初始化组件 | |
| gr.Markdown("A tool for interactive observation of lotsa dataset, extended from lhoestq/datasets-explorer") | |
| cp_dataset = gr.Textbox(BENCHMARK_DATASET, label="Pick a dataset", interactive=False) | |
| cp_go = gr.Button("Explore") | |
| cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False) | |
| cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False) | |
| cp_goto_next_page = gr.Button("Next page", visible=False) | |
| cp_error = gr.Markdown("", visible=False) | |
| cp_info = gr.Markdown("", visible=False) | |
| cp_result = gr.Markdown("", visible=False) | |
| qusetion_id_box = gr.Textbox(visible=False) | |
| tot_samples = 0 | |
| # 初始化Salesforce/lotsa_data数据集展示使用的组件 | |
| # componets = [] | |
| # for _ in range(TIME_PLOTS_NUM): | |
| # with gr.Row(): | |
| # with gr.Column(scale=2): | |
| # select_sample_box = gr.Dropdown(choices=["items"], label="Select some items", multiselect=True, interactive=True) | |
| # with gr.Column(scale=2): | |
| # select_subtarget_box = gr.Dropdown(choices=["subtargets"], label="Select some subtargets", multiselect=True, interactive=True) | |
| # with gr.Column(scale=1): | |
| # select_buttom = gr.Button("Show selected items") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| statistics_textbox = gr.DataFrame() | |
| hr_line = gr.HTML('<hr style="border: 1px solid black;">') | |
| question_info_textbox_p1 = gr.DataFrame() | |
| question_info_textbox_p2 = gr.DataFrame() | |
| with gr.Column(scale=3): | |
| plot = gr.Plot() | |
| with gr.Row(): | |
| user_input_box = gr.Textbox(label="question", interactive=False) | |
| user_output_box = gr.Textbox(label="answer", interactive=False) | |
| # componets.append({"select_sample_box": select_sample_box, | |
| # "statistics_textbox": statistics_textbox, | |
| # "user_input_box": user_input_box, | |
| # "plot": plot}) | |
| hr_line_ = gr.HTML('<hr style="border: 2px dashed black;">') | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| choose_retain = gr.Dropdown(["delete", "retain", "modify"], label="Choose to retain or delete or modify", interactive=True) | |
| with gr.Column(scale=2): | |
| choose_retain_reason_box = gr.Textbox(label="Reason", placeholder="Enter your reason", interactive=True) | |
| score_slider = gr.Slider(1, 5, 1, step=1, label="Score for answer", interactive=True) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| user_name_box = gr.Textbox(label="user_name", placeholder="Enter your name firstly", interactive=True) | |
| user_submit_button = gr.Button("submit", interactive=True) | |
| with gr.Column(scale=1): | |
| submit_info_box = gr.Textbox(label="submit_info", interactive=False) | |
| with gr.Row(): | |
| cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False) | |
| cp_goto_page = gr.Button("Go to page", visible=False) | |
| def show_error(message: str) -> dict: | |
| return { | |
| cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"), | |
| cp_info: gr.update(visible=False, value=""), | |
| cp_result: gr.update(visible=False, value=""), | |
| } | |
| def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str|List[str], sub_targets: List[int|str]=['all']) -> dict: | |
| try: | |
| ret = {} | |
| if dataset == TARGET_DATASET: | |
| if type(page) == str: | |
| page = [page] | |
| df_list, id_list = process_salesforce_data(dataset, config, split, page, sub_targets) | |
| ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list)) | |
| ret[plot] = gr.update(value=create_plot(df_list, id_list)) | |
| elif dataset == BENCHMARK_DATASET: | |
| df, max_page, info = get_page(dataset, config, split, page) | |
| question_info_p1 = get_question_info(df, [COLUMN_DOMAIN, COLUMN_SOURCE]) | |
| question_info_p2 = get_question_info(df, [COLUMN_QA_TYPE, COLUMN_TASK_TYPE]) | |
| ret[qusetion_id_box] = gr.update(value = df[COLUMN_ID][0]) | |
| lotsa_config, lotsa_page = str(df[COLUMN_SOURCE][0]).split('/')[-1], eval(df[COLUMN_TS_ID][0]) | |
| lotsa_page[0] += 1 | |
| #TODO: 对partial-train的处理 | |
| lotsa_split = get_parquet_splits(TARGET_DATASET, lotsa_config)[0] | |
| start_index, end_index = df[COLUMN_START_INDEX][0], df[COLUMN_END_INDEX][0] | |
| interval = None if np.isnan(start_index) or np.isnan(end_index) else [start_index, end_index] | |
| lotsa_subtargets = eval(df[COLUMN_TARGET_ID][0]) | |
| df_list, id_list = process_salesforce_data(TARGET_DATASET, lotsa_config, lotsa_split, lotsa_page, lotsa_subtargets) | |
| ret[question_info_textbox_p1] = gr.update(value=question_info_p1) | |
| ret[question_info_textbox_p2] = gr.update(value=question_info_p2) | |
| ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list, interval=interval)) | |
| ret[plot] = gr.update(value=create_plot(df_list, id_list, interval=interval)) | |
| if df[COLUMN_OPTION][0] is not None: | |
| user_input_box_value = df[COLUMN_QUESTION][0] + '\n\nOptions:\n' + df[COLUMN_OPTION][0] | |
| else: | |
| user_input_box_value = df[COLUMN_QUESTION][0] | |
| ret[user_input_box] = gr.update(value=user_input_box_value) | |
| ret[user_output_box] = gr.update(value=df[COLUMN_ANSWER][0]) | |
| ret[submit_info_box] = gr.update(value="") | |
| else: | |
| markdown_result, max_page, info = get_page(dataset, config, split, page) | |
| ret[cp_result] = gr.update(visible=True, value=markdown_result) | |
| return { | |
| **ret, | |
| cp_info: gr.update(visible=True, value=f"Page {page}/{max_page} {info}"), | |
| cp_error: gr.update(visible=False, value="") | |
| } | |
| except AppError as err: | |
| return show_error(str(err)) | |
| def show_dataset_at_config_and_split_and_next_page(dataset: str, config: str, split: str, page: str) -> dict: | |
| try: | |
| next_page = str(int(page) + 1) | |
| return { | |
| **show_dataset_at_config_and_split_and_page(dataset, config, split, next_page), | |
| cp_page: gr.update(value=next_page, visible=True), | |
| } | |
| except AppError as err: | |
| return show_error(str(err)) | |
| def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict: | |
| try: | |
| return { | |
| **show_dataset_at_config_and_split_and_page(dataset, config, split, "1", [0]), | |
| # select_sample_box: gr.update(choices=[f"{i+1}" for i in range(tot_samples)], value=["1"]), | |
| # select_subtarget_box: gr.update(choices=[i for i in range(tot_targets)]+['all'], value=[0]), | |
| cp_page: gr.update(value="1", visible=True), | |
| cp_goto_page: gr.update(visible=True), | |
| cp_goto_next_page: gr.update(visible=True), | |
| } | |
| except AppError as err: | |
| return show_error(str(err)) | |
| def show_dataset_at_config(dataset: str, config: str) -> dict: | |
| try: | |
| splits = get_parquet_splits(dataset, config) | |
| if not splits: | |
| raise AppError(f"Dataset {dataset} with config {config} has no splits.") | |
| else: | |
| split = splits[0] | |
| return { | |
| **show_dataset_at_config_and_split(dataset, config, split), | |
| cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1), | |
| } | |
| except AppError as err: | |
| return show_error(str(err)) | |
| def show_dataset(dataset: str) -> dict: | |
| try: | |
| configs = get_parquet_configs(dataset) | |
| if not configs: | |
| raise AppError(f"Dataset {dataset} has no configs.") | |
| else: | |
| config = configs[0] | |
| return { | |
| **show_dataset_at_config(dataset, config), | |
| cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1), | |
| } | |
| except AppError as err: | |
| return show_error(str(err)) | |
| all_outputs = [cp_config, cp_split, | |
| cp_page, cp_goto_page, cp_goto_next_page, | |
| cp_result, cp_info, cp_error, | |
| # select_sample_box, select_subtarget_box, | |
| # select_buttom, | |
| statistics_textbox, plot, | |
| qusetion_id_box, | |
| user_input_box, user_output_box, | |
| submit_info_box, | |
| question_info_textbox_p1, question_info_textbox_p2] | |
| cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs) | |
| cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs) | |
| cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs) | |
| cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs) | |
| cp_goto_next_page.click(show_dataset_at_config_and_split_and_next_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs) | |
| user_submit_button.click(save_score, inputs=[user_name_box, cp_config, qusetion_id_box, score_slider, choose_retain, choose_retain_reason_box], outputs=[submit_info_box]) | |
| # select_buttom.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, select_sample_box, select_subtarget_box], outputs=all_outputs) | |
| if __name__ == "__main__": | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| # host = "127.0.0.1" | |
| host = "0.0.0.0" | |
| # import subprocess | |
| # subprocess.Popen(["python", "test_server.py"]) | |
| uvicorn.run(app, host=host, port=7860) | |
| #// 对一下数据 -- | |
| #// 部署到服务器上 | |
| #// 测试一下功能 -- | |
| #// 加一个选择文本框【删除、保留、修改】,加一个意见的文本框 -- | |
| #// 横坐标增加一个代表index的轴 - | |
| #// 加一个物理含义的映射 - |