Spaces:
Sleeping
Sleeping
import copy | |
import os | |
import time | |
from functools import lru_cache, partial | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import pyarrow as pa | |
import pyarrow.parquet as pq | |
from tqdm.contrib.concurrent import thread_map | |
from fastapi import FastAPI, Response | |
import uvicorn | |
from hffs.fs import HfFileSystem | |
from datasets import Features, Image, Audio, Sequence | |
from typing import List, Tuple, Callable | |
from utils import ndarray_to_base64, clean_up_df, create_statistic, create_plot, get_question_info | |
from comm_utils import save_to_file, send_msg_to_server, save_score | |
from config import * | |
class AppError(RuntimeError): | |
pass | |
APP_URL = "http://127.0.0.1:7860" if os.getenv("DEV") else "https://Kamarov-lotsa-explorer.hf.space" | |
PAGE_SIZE = 1 | |
MAX_CACHED_BLOBS = PAGE_SIZE * 10 | |
TIME_PLOTS_NUM = 1 | |
_blobs_cache = {} | |
##################################################### | |
# Define routes for image and audio files | |
##################################################### | |
app = FastAPI() | |
def image(id: str): | |
blob = get_blob(id) | |
return Response(content=blob, media_type="image/png") | |
def audio(id: str): | |
blob = get_blob(id) | |
return Response(content=blob, media_type="audio/wav") | |
def push_blob(blob: bytes, blob_id: str) -> str: | |
global _blobs_cache | |
if blob_id in _blobs_cache: | |
del _blobs_cache[blob_id] | |
_blobs_cache[blob_id] = blob | |
if len(_blobs_cache) > MAX_CACHED_BLOBS: | |
del _blobs_cache[next(iter(_blobs_cache))] | |
return blob_id | |
def get_blob(blob_id: str) -> bytes: | |
global _blobs_cache | |
return _blobs_cache[blob_id] | |
def blobs_to_urls(blobs: List[bytes], type: str, prefix: str) -> List[str]: | |
image_blob_ids = [push_blob(blob, f"{prefix}-{i}") for i, blob in enumerate(blobs)] | |
return [APP_URL + f"/{type}?id={blob_id}" for blob_id in image_blob_ids] | |
##################################################### | |
# List configs, splits and parquet files | |
##################################################### | |
def get_parquet_fs(dataset: str) -> HfFileSystem: | |
try: | |
fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet") | |
if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")): | |
raise AppError(f"Parquet export doesn't exist for '{dataset}'.") | |
return fs | |
except: | |
raise AppError(f"Parquet export doesn't exist for '{dataset}'.") | |
def get_parquet_configs(dataset: str) -> List[str]: | |
fs = get_parquet_fs(dataset) | |
return [path for path in fs.ls("") if fs.isdir(path)] | |
def _sorted_split_key(split: str) -> str: | |
return split if not split.startswith("train") else chr(0) + split # always "train" first | |
def get_parquet_splits(dataset: str, config: str) -> List[str]: | |
fs = get_parquet_fs(dataset) | |
return [path.split("/")[1] for path in fs.ls(config) if fs.isdir(path)] | |
##################################################### | |
# Index and query Parquet data | |
##################################################### | |
RowGroupReaders = List[Callable[[], pa.Table]] | |
def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, Features]: | |
fs = get_parquet_fs(dataset) | |
sources = fs.glob(f"{config}/{split}/*.parquet") | |
if not sources: | |
if config not in get_parquet_configs(dataset): | |
raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.") | |
else: | |
raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.") | |
desc = f"{dataset}/{config}/{split}" | |
all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources, desc=desc, unit="pq") | |
features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema()) | |
rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)]) | |
rg_readers = [partial(pf.read_row_group, i) for pf in all_pf for i in range(pf.metadata.num_row_groups)] | |
max_page = 1 + (rg_offsets[-1] - 1) // PAGE_SIZE | |
return rg_offsets, rg_readers, max_page, features | |
def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame: | |
start_row, end_row = (page - 1) * page_size, min(page * page_size, rg_offsets[-1] - 1) # both included | |
# rg_offsets[start_rg - 1] <= start_row < rg_offsets[start_rg] | |
# rg_offsets[end_rg - 1] <= end_row < rg_offsets[end_rg] | |
start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right") # both included | |
t = time.time() | |
# TODO:性能瓶颈 | |
pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)]) | |
print(f"concat_tables time: {time.time()-t}") | |
offset = start_row - (rg_offsets[start_rg - 1] if start_rg > 0 else 0) | |
pa_table = pa_table.slice(offset, page_size) | |
return pa_table.to_pandas() | |
def sanitize_inputs(dataset: str, config: str, split: str, page: str) -> Tuple[str, str, str, int]: | |
try: | |
page = int(page) | |
assert page > 0 | |
except: | |
raise AppError(f"Bad page: {page}") | |
if not dataset: | |
raise AppError("Empty dataset name") | |
if not config: | |
raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.") | |
if not split: | |
raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.") | |
return dataset, config, split, int(page) | |
def get_page_df(dataset: str, config: str, split: str, page: str) -> Tuple[pd.DataFrame, int, Features]: | |
dataset, config, split, page = sanitize_inputs(dataset, config, split, page) | |
rg_offsets, rg_readers, max_page, features = index(dataset, config, split) | |
if page > max_page: | |
raise AppError(f"Page {page} does not exist") | |
df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers) | |
return df, max_page, features | |
##################################################### | |
# Format results | |
##################################################### | |
def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]: | |
df_, max_page, features = get_page_df(dataset, config, split, page) | |
df = copy.deepcopy(df_) | |
unsupported_columns = [] | |
if dataset == TARGET_DATASET: | |
# 对Salesforce/lotsa_data数据集进行特殊处理 | |
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
return df, max_page, info | |
elif dataset == BENCHMARK_DATASET: | |
# 对YY26/TS_DATASETS数据集进行特殊处理 | |
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
return df, max_page, info | |
else: | |
# 其他数据集保留原有逻辑 | |
for column, feature in features.items(): | |
if isinstance(feature, Image): | |
blob_type = "image" # TODO: support audio - right now it seems that the markdown renderer in gradio doesn't support audio and shows nothing | |
blob_urls = blobs_to_urls([item.get("bytes") if isinstance(item, dict) else None for item in df[column]], blob_type, prefix=f"{dataset}-{config}-{split}-{page}-{column}") | |
df = df.drop([column], axis=1) | |
df[column] = [f"![]({url})" for url in blob_urls] | |
elif any(bad_type in str(feature) for bad_type in ["Image(", "Audio(", "'binary'"]): | |
unsupported_columns.append(column) | |
df = df.drop([column], axis=1) | |
elif isinstance(feature, Sequence): | |
if feature.feature.dtype == 'float32': | |
# 直接将内容绘图,并嵌入为Base64编码 | |
base64_srcs = [ndarray_to_base64(vec) for vec in df[column]] | |
df = df.drop([column], axis=1) | |
df[column] = [f"![]({src})" for src in base64_srcs] | |
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}" | |
return df.reset_index().to_markdown(index=False), max_page, info | |
##################################################### | |
# Process data | |
##################################################### | |
def process_salesforce_data(dataset: str, config: str, split: str, page: List[str], sub_targets: List[int|str]) -> Tuple[List[pd.DataFrame], List[str]]: | |
df_list, id_list = [], [] | |
for i, page in enumerate(page): | |
df, max_page, info = get_page(dataset, config, split, page) | |
global tot_samples, tot_targets | |
tot_samples, tot_targets = max_page, len(df['target'][0]) if isinstance(df['target'][0], np.ndarray) and df['target'][0].dtype == 'O' else 1 | |
if 'all' in sub_targets: | |
sub_targets = [i for i in range(tot_targets)] | |
df = clean_up_df(df, sub_targets, SUBTARGET_MEANING_MAP[config]) | |
row = df.iloc[0] | |
id_list.append(row['item_id']) | |
# 将单行的DataFrame展开为新的DataFrame | |
df_without_index = row.drop('item_id').to_frame().T | |
df_expanded = df_without_index.apply(pd.Series.explode).reset_index(drop=True).fillna(0) | |
df_list.append(df_expanded) | |
return df_list, id_list | |
##################################################### | |
# Gradio app | |
##################################################### | |
with gr.Blocks() as demo: | |
# 初始化组件 | |
gr.Markdown("A tool for interactive observation of lotsa dataset, extended from lhoestq/datasets-explorer") | |
cp_dataset = gr.Textbox(BENCHMARK_DATASET, label="Pick a dataset", interactive=False) | |
cp_go = gr.Button("Explore") | |
cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False) | |
cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False) | |
cp_goto_next_page = gr.Button("Next page", visible=False) | |
cp_error = gr.Markdown("", visible=False) | |
cp_info = gr.Markdown("", visible=False) | |
cp_result = gr.Markdown("", visible=False) | |
qusetion_id_box = gr.Textbox(visible=False) | |
tot_samples = 0 | |
# 初始化Salesforce/lotsa_data数据集展示使用的组件 | |
# componets = [] | |
# for _ in range(TIME_PLOTS_NUM): | |
# with gr.Row(): | |
# with gr.Column(scale=2): | |
# select_sample_box = gr.Dropdown(choices=["items"], label="Select some items", multiselect=True, interactive=True) | |
# with gr.Column(scale=2): | |
# select_subtarget_box = gr.Dropdown(choices=["subtargets"], label="Select some subtargets", multiselect=True, interactive=True) | |
# with gr.Column(scale=1): | |
# select_buttom = gr.Button("Show selected items") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
statistics_textbox = gr.DataFrame() | |
hr_line = gr.HTML('<hr style="border: 1px solid black;">') | |
question_info_textbox_p1 = gr.DataFrame() | |
question_info_textbox_p2 = gr.DataFrame() | |
with gr.Column(scale=3): | |
plot = gr.Plot() | |
with gr.Row(): | |
user_input_box = gr.Textbox(label="question", interactive=False) | |
user_output_box = gr.Textbox(label="answer", interactive=False) | |
# componets.append({"select_sample_box": select_sample_box, | |
# "statistics_textbox": statistics_textbox, | |
# "user_input_box": user_input_box, | |
# "plot": plot}) | |
hr_line_ = gr.HTML('<hr style="border: 2px dashed black;">') | |
with gr.Row(): | |
with gr.Column(scale=1): | |
choose_retain = gr.Dropdown(["delete", "retain", "modify"], label="Choose to retain or delete or modify", interactive=True) | |
with gr.Column(scale=2): | |
choose_retain_reason_box = gr.Textbox(label="Reason", placeholder="Enter your reason", interactive=True) | |
score_slider = gr.Slider(1, 5, 1, step=1, label="Score for answer", interactive=True) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
user_name_box = gr.Textbox(label="user_name", placeholder="Enter your name firstly", interactive=True) | |
user_submit_button = gr.Button("submit", interactive=True) | |
with gr.Column(scale=1): | |
submit_info_box = gr.Textbox(label="submit_info", interactive=False) | |
with gr.Row(): | |
cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False) | |
cp_goto_page = gr.Button("Go to page", visible=False) | |
def show_error(message: str) -> dict: | |
return { | |
cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"), | |
cp_info: gr.update(visible=False, value=""), | |
cp_result: gr.update(visible=False, value=""), | |
} | |
def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str|List[str], sub_targets: List[int|str]=['all']) -> dict: | |
try: | |
ret = {} | |
if dataset == TARGET_DATASET: | |
if type(page) == str: | |
page = [page] | |
df_list, id_list = process_salesforce_data(dataset, config, split, page, sub_targets) | |
ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list)) | |
ret[plot] = gr.update(value=create_plot(df_list, id_list)) | |
elif dataset == BENCHMARK_DATASET: | |
df, max_page, info = get_page(dataset, config, split, page) | |
question_info_p1 = get_question_info(df, [COLUMN_DOMAIN, COLUMN_SOURCE]) | |
question_info_p2 = get_question_info(df, [COLUMN_QA_TYPE, COLUMN_TASK_TYPE]) | |
ret[qusetion_id_box] = gr.update(value = df[COLUMN_ID][0]) | |
lotsa_config, lotsa_page = str(df[COLUMN_SOURCE][0]).split('/')[-1], eval(df[COLUMN_TS_ID][0]) | |
#TODO: 对partial-train的处理 | |
lotsa_split = get_parquet_splits(TARGET_DATASET, lotsa_config)[0] | |
start_index, end_index = df[COLUMN_START_INDEX][0], df[COLUMN_END_INDEX][0] | |
interval = None if np.isnan(start_index) or np.isnan(end_index) else [start_index, end_index] | |
lotsa_subtargets = eval(df[COLUMN_TARGET_ID][0]) | |
df_list, id_list = process_salesforce_data(TARGET_DATASET, lotsa_config, lotsa_split, lotsa_page, lotsa_subtargets) | |
ret[question_info_textbox_p1] = gr.update(value=question_info_p1) | |
ret[question_info_textbox_p2] = gr.update(value=question_info_p2) | |
ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list, interval=interval)) | |
ret[plot] = gr.update(value=create_plot(df_list, id_list, interval=interval)) | |
ret[user_input_box] = gr.update(value=df[COLUMN_QUESTION][0]) | |
ret[user_output_box] = gr.update(value=df[COLUMN_ANSWER][0]) | |
ret[submit_info_box] = gr.update(value="") | |
else: | |
markdown_result, max_page, info = get_page(dataset, config, split, page) | |
ret[cp_result] = gr.update(visible=True, value=markdown_result) | |
return { | |
**ret, | |
cp_info: gr.update(visible=True, value=f"Page {page}/{max_page} {info}"), | |
cp_error: gr.update(visible=False, value="") | |
} | |
except AppError as err: | |
return show_error(str(err)) | |
def show_dataset_at_config_and_split_and_next_page(dataset: str, config: str, split: str, page: str) -> dict: | |
try: | |
next_page = str(int(page) + 1) | |
return { | |
**show_dataset_at_config_and_split_and_page(dataset, config, split, next_page), | |
cp_page: gr.update(value=next_page, visible=True), | |
} | |
except AppError as err: | |
return show_error(str(err)) | |
def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict: | |
try: | |
return { | |
**show_dataset_at_config_and_split_and_page(dataset, config, split, "1", [0]), | |
# select_sample_box: gr.update(choices=[f"{i+1}" for i in range(tot_samples)], value=["1"]), | |
# select_subtarget_box: gr.update(choices=[i for i in range(tot_targets)]+['all'], value=[0]), | |
cp_page: gr.update(value="1", visible=True), | |
cp_goto_page: gr.update(visible=True), | |
cp_goto_next_page: gr.update(visible=True), | |
} | |
except AppError as err: | |
return show_error(str(err)) | |
def show_dataset_at_config(dataset: str, config: str) -> dict: | |
try: | |
splits = get_parquet_splits(dataset, config) | |
if not splits: | |
raise AppError(f"Dataset {dataset} with config {config} has no splits.") | |
else: | |
split = splits[0] | |
return { | |
**show_dataset_at_config_and_split(dataset, config, split), | |
cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1), | |
} | |
except AppError as err: | |
return show_error(str(err)) | |
def show_dataset(dataset: str) -> dict: | |
try: | |
configs = get_parquet_configs(dataset) | |
if not configs: | |
raise AppError(f"Dataset {dataset} has no configs.") | |
else: | |
config = configs[0] | |
return { | |
**show_dataset_at_config(dataset, config), | |
cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1), | |
} | |
except AppError as err: | |
return show_error(str(err)) | |
all_outputs = [cp_config, cp_split, | |
cp_page, cp_goto_page, cp_goto_next_page, | |
cp_result, cp_info, cp_error, | |
# select_sample_box, select_subtarget_box, | |
# select_buttom, | |
statistics_textbox, plot, | |
qusetion_id_box, | |
user_input_box, user_output_box, | |
submit_info_box, | |
question_info_textbox_p1, question_info_textbox_p2] | |
cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs) | |
cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs) | |
cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs) | |
cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs) | |
cp_goto_next_page.click(show_dataset_at_config_and_split_and_next_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs) | |
user_submit_button.click(save_score, inputs=[user_name_box, cp_config, qusetion_id_box, score_slider, choose_retain, choose_retain_reason_box], outputs=[submit_info_box]) | |
# select_buttom.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, select_sample_box, select_subtarget_box], outputs=all_outputs) | |
if __name__ == "__main__": | |
app = gr.mount_gradio_app(app, demo, path="/") | |
# host = "127.0.0.1" if os.getenv("DEV") else "0.0.0.0" | |
host = "0.0.0.0" | |
# import subprocess | |
# subprocess.Popen(["python", "test_server.py"]) | |
uvicorn.run(app, host=host, port=7860) | |
#// 对一下数据 -- | |
#// 部署到服务器上 | |
#// 测试一下功能 -- | |
#// 加一个选择文本框【删除、保留、修改】,加一个意见的文本框 -- | |
#// 横坐标增加一个代表index的轴 - | |
#// 加一个物理含义的映射 - |