Spaces:
Sleeping
Sleeping
File size: 19,974 Bytes
f3718f0 60dbd41 15549a1 60dbd41 f3718f0 60dbd41 f3718f0 60dbd41 f3718f0 5c68062 f3718f0 60dbd41 f3718f0 15549a1 f3718f0 a4c0034 f3718f0 a4c0034 f3718f0 1c081e2 f3718f0 a4c0034 5c68062 a4c0034 15549a1 5c68062 a4c0034 15549a1 f3718f0 60dbd41 f3718f0 60dbd41 f3718f0 a4c0034 60dbd41 a2f1673 60dbd41 a4c0034 60dbd41 15549a1 f3718f0 0d31272 f3718f0 15549a1 60dbd41 a4c0034 0d31272 f3718f0 5c68062 f3718f0 a4c0034 f3718f0 a25c8f7 5c68062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import copy
import os
import time
from functools import lru_cache, partial
import gradio as gr
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from tqdm.contrib.concurrent import thread_map
from fastapi import FastAPI, Response
import uvicorn
from hffs.fs import HfFileSystem
from datasets import Features, Image, Audio, Sequence
from typing import List, Tuple, Callable
from utils import ndarray_to_base64, clean_up_df, create_statistic, create_plot, get_question_info
from comm_utils import save_to_file, send_msg_to_server, save_score
from config import *
class AppError(RuntimeError):
pass
APP_URL = "http://127.0.0.1:7860" if os.getenv("DEV") else "https://Kamarov-lotsa-explorer.hf.space"
PAGE_SIZE = 1
MAX_CACHED_BLOBS = PAGE_SIZE * 10
TIME_PLOTS_NUM = 1
_blobs_cache = {}
#####################################################
# Define routes for image and audio files
#####################################################
app = FastAPI()
@app.get(
"/image",
responses={200: {"content": {"image/png": {}}}},
response_class=Response,
)
def image(id: str):
blob = get_blob(id)
return Response(content=blob, media_type="image/png")
@app.get(
"/audio",
responses={200: {"content": {"audio/wav": {}}}},
response_class=Response,
)
def audio(id: str):
blob = get_blob(id)
return Response(content=blob, media_type="audio/wav")
def push_blob(blob: bytes, blob_id: str) -> str:
global _blobs_cache
if blob_id in _blobs_cache:
del _blobs_cache[blob_id]
_blobs_cache[blob_id] = blob
if len(_blobs_cache) > MAX_CACHED_BLOBS:
del _blobs_cache[next(iter(_blobs_cache))]
return blob_id
def get_blob(blob_id: str) -> bytes:
global _blobs_cache
return _blobs_cache[blob_id]
def blobs_to_urls(blobs: List[bytes], type: str, prefix: str) -> List[str]:
image_blob_ids = [push_blob(blob, f"{prefix}-{i}") for i, blob in enumerate(blobs)]
return [APP_URL + f"/{type}?id={blob_id}" for blob_id in image_blob_ids]
#####################################################
# List configs, splits and parquet files
#####################################################
@lru_cache(maxsize=128)
def get_parquet_fs(dataset: str) -> HfFileSystem:
try:
fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet")
if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")):
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
return fs
except:
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
@lru_cache(maxsize=128)
def get_parquet_configs(dataset: str) -> List[str]:
fs = get_parquet_fs(dataset)
return [path for path in fs.ls("") if fs.isdir(path)]
def _sorted_split_key(split: str) -> str:
return split if not split.startswith("train") else chr(0) + split # always "train" first
@lru_cache(maxsize=128)
def get_parquet_splits(dataset: str, config: str) -> List[str]:
fs = get_parquet_fs(dataset)
return [path.split("/")[1] for path in fs.ls(config) if fs.isdir(path)]
#####################################################
# Index and query Parquet data
#####################################################
RowGroupReaders = List[Callable[[], pa.Table]]
@lru_cache(maxsize=128)
def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, Features]:
fs = get_parquet_fs(dataset)
sources = fs.glob(f"{config}/{split}/*.parquet")
if not sources:
if config not in get_parquet_configs(dataset):
raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
else:
raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
desc = f"{dataset}/{config}/{split}"
all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources, desc=desc, unit="pq")
features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema())
rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)])
rg_readers = [partial(pf.read_row_group, i) for pf in all_pf for i in range(pf.metadata.num_row_groups)]
max_page = 1 + (rg_offsets[-1] - 1) // PAGE_SIZE
return rg_offsets, rg_readers, max_page, features
def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame:
start_row, end_row = (page - 1) * page_size, min(page * page_size, rg_offsets[-1] - 1) # both included
# rg_offsets[start_rg - 1] <= start_row < rg_offsets[start_rg]
# rg_offsets[end_rg - 1] <= end_row < rg_offsets[end_rg]
start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right") # both included
t = time.time()
# TODO:性能瓶颈
pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)])
print(f"concat_tables time: {time.time()-t}")
offset = start_row - (rg_offsets[start_rg - 1] if start_rg > 0 else 0)
pa_table = pa_table.slice(offset, page_size)
return pa_table.to_pandas()
def sanitize_inputs(dataset: str, config: str, split: str, page: str) -> Tuple[str, str, str, int]:
try:
page = int(page)
assert page > 0
except:
raise AppError(f"Bad page: {page}")
if not dataset:
raise AppError("Empty dataset name")
if not config:
raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
if not split:
raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
return dataset, config, split, int(page)
@lru_cache(maxsize=128)
def get_page_df(dataset: str, config: str, split: str, page: str) -> Tuple[pd.DataFrame, int, Features]:
dataset, config, split, page = sanitize_inputs(dataset, config, split, page)
rg_offsets, rg_readers, max_page, features = index(dataset, config, split)
if page > max_page:
raise AppError(f"Page {page} does not exist")
df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers)
return df, max_page, features
#####################################################
# Format results
#####################################################
def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]:
df_, max_page, features = get_page_df(dataset, config, split, page)
df = copy.deepcopy(df_)
unsupported_columns = []
if dataset == TARGET_DATASET:
# 对Salesforce/lotsa_data数据集进行特殊处理
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}"
return df, max_page, info
elif dataset == BENCHMARK_DATASET:
# 对YY26/TS_DATASETS数据集进行特殊处理
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}"
return df, max_page, info
else:
# 其他数据集保留原有逻辑
for column, feature in features.items():
if isinstance(feature, Image):
blob_type = "image" # TODO: support audio - right now it seems that the markdown renderer in gradio doesn't support audio and shows nothing
blob_urls = blobs_to_urls([item.get("bytes") if isinstance(item, dict) else None for item in df[column]], blob_type, prefix=f"{dataset}-{config}-{split}-{page}-{column}")
df = df.drop([column], axis=1)
df[column] = [f"![]({url})" for url in blob_urls]
elif any(bad_type in str(feature) for bad_type in ["Image(", "Audio(", "'binary'"]):
unsupported_columns.append(column)
df = df.drop([column], axis=1)
elif isinstance(feature, Sequence):
if feature.feature.dtype == 'float32':
# 直接将内容绘图,并嵌入为Base64编码
base64_srcs = [ndarray_to_base64(vec) for vec in df[column]]
df = df.drop([column], axis=1)
df[column] = [f"![]({src})" for src in base64_srcs]
info = "" if not unsupported_columns else f"Some columns are not supported yet: {unsupported_columns}"
return df.reset_index().to_markdown(index=False), max_page, info
#####################################################
# Process data
#####################################################
def process_salesforce_data(dataset: str, config: str, split: str, page: List[str], sub_targets: List[int|str]) -> Tuple[List[pd.DataFrame], List[str]]:
df_list, id_list = [], []
for i, page in enumerate(page):
df, max_page, info = get_page(dataset, config, split, page)
global tot_samples, tot_targets
tot_samples, tot_targets = max_page, len(df['target'][0]) if isinstance(df['target'][0], np.ndarray) and df['target'][0].dtype == 'O' else 1
if 'all' in sub_targets:
sub_targets = [i for i in range(tot_targets)]
df = clean_up_df(df, sub_targets, SUBTARGET_MEANING_MAP[config])
row = df.iloc[0]
id_list.append(row['item_id'])
# 将单行的DataFrame展开为新的DataFrame
df_without_index = row.drop('item_id').to_frame().T
df_expanded = df_without_index.apply(pd.Series.explode).reset_index(drop=True).fillna(0)
df_list.append(df_expanded)
return df_list, id_list
#####################################################
# Gradio app
#####################################################
with gr.Blocks() as demo:
# 初始化组件
gr.Markdown("A tool for interactive observation of lotsa dataset, extended from lhoestq/datasets-explorer")
cp_dataset = gr.Textbox(BENCHMARK_DATASET, label="Pick a dataset", interactive=False)
cp_go = gr.Button("Explore")
cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False)
cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False)
cp_goto_next_page = gr.Button("Next page", visible=False)
cp_error = gr.Markdown("", visible=False)
cp_info = gr.Markdown("", visible=False)
cp_result = gr.Markdown("", visible=False)
qusetion_id_box = gr.Textbox(visible=False)
tot_samples = 0
# 初始化Salesforce/lotsa_data数据集展示使用的组件
# componets = []
# for _ in range(TIME_PLOTS_NUM):
# with gr.Row():
# with gr.Column(scale=2):
# select_sample_box = gr.Dropdown(choices=["items"], label="Select some items", multiselect=True, interactive=True)
# with gr.Column(scale=2):
# select_subtarget_box = gr.Dropdown(choices=["subtargets"], label="Select some subtargets", multiselect=True, interactive=True)
# with gr.Column(scale=1):
# select_buttom = gr.Button("Show selected items")
with gr.Row():
with gr.Column(scale=2):
statistics_textbox = gr.DataFrame()
hr_line = gr.HTML('<hr style="border: 1px solid black;">')
question_info_textbox_p1 = gr.DataFrame()
question_info_textbox_p2 = gr.DataFrame()
with gr.Column(scale=3):
plot = gr.Plot()
with gr.Row():
user_input_box = gr.Textbox(label="question", interactive=False)
user_output_box = gr.Textbox(label="answer", interactive=False)
# componets.append({"select_sample_box": select_sample_box,
# "statistics_textbox": statistics_textbox,
# "user_input_box": user_input_box,
# "plot": plot})
hr_line_ = gr.HTML('<hr style="border: 2px dashed black;">')
with gr.Row():
with gr.Column(scale=1):
choose_retain = gr.Dropdown(["delete", "retain", "modify"], label="Choose to retain or delete or modify", interactive=True)
with gr.Column(scale=2):
choose_retain_reason_box = gr.Textbox(label="Reason", placeholder="Enter your reason", interactive=True)
score_slider = gr.Slider(1, 5, 1, step=1, label="Score for answer", interactive=True)
with gr.Row():
with gr.Column(scale=2):
user_name_box = gr.Textbox(label="user_name", placeholder="Enter your name firstly", interactive=True)
user_submit_button = gr.Button("submit", interactive=True)
with gr.Column(scale=1):
submit_info_box = gr.Textbox(label="submit_info", interactive=False)
with gr.Row():
cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False)
cp_goto_page = gr.Button("Go to page", visible=False)
def show_error(message: str) -> dict:
return {
cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"),
cp_info: gr.update(visible=False, value=""),
cp_result: gr.update(visible=False, value=""),
}
def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str|List[str], sub_targets: List[int|str]=['all']) -> dict:
try:
ret = {}
if dataset == TARGET_DATASET:
if type(page) == str:
page = [page]
df_list, id_list = process_salesforce_data(dataset, config, split, page, sub_targets)
ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list))
ret[plot] = gr.update(value=create_plot(df_list, id_list))
elif dataset == BENCHMARK_DATASET:
df, max_page, info = get_page(dataset, config, split, page)
question_info_p1 = get_question_info(df, [COLUMN_DOMAIN, COLUMN_SOURCE])
question_info_p2 = get_question_info(df, [COLUMN_QA_TYPE, COLUMN_TASK_TYPE])
ret[qusetion_id_box] = gr.update(value = df[COLUMN_ID][0])
lotsa_config, lotsa_page = str(df[COLUMN_SOURCE][0]).split('/')[-1], eval(df[COLUMN_TS_ID][0])
#TODO: 对partial-train的处理
lotsa_split = get_parquet_splits(TARGET_DATASET, lotsa_config)[0]
start_index, end_index = df[COLUMN_START_INDEX][0], df[COLUMN_END_INDEX][0]
interval = None if np.isnan(start_index) or np.isnan(end_index) else [start_index, end_index]
lotsa_subtargets = eval(df[COLUMN_TARGET_ID][0])
df_list, id_list = process_salesforce_data(TARGET_DATASET, lotsa_config, lotsa_split, lotsa_page, lotsa_subtargets)
ret[question_info_textbox_p1] = gr.update(value=question_info_p1)
ret[question_info_textbox_p2] = gr.update(value=question_info_p2)
ret[statistics_textbox] = gr.update(value=create_statistic(df_list, id_list, interval=interval))
ret[plot] = gr.update(value=create_plot(df_list, id_list, interval=interval))
ret[user_input_box] = gr.update(value=df[COLUMN_QUESTION][0])
ret[user_output_box] = gr.update(value=df[COLUMN_ANSWER][0])
ret[submit_info_box] = gr.update(value="")
else:
markdown_result, max_page, info = get_page(dataset, config, split, page)
ret[cp_result] = gr.update(visible=True, value=markdown_result)
return {
**ret,
cp_info: gr.update(visible=True, value=f"Page {page}/{max_page} {info}"),
cp_error: gr.update(visible=False, value="")
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config_and_split_and_next_page(dataset: str, config: str, split: str, page: str) -> dict:
try:
next_page = str(int(page) + 1)
return {
**show_dataset_at_config_and_split_and_page(dataset, config, split, next_page),
cp_page: gr.update(value=next_page, visible=True),
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict:
try:
return {
**show_dataset_at_config_and_split_and_page(dataset, config, split, "1", [0]),
# select_sample_box: gr.update(choices=[f"{i+1}" for i in range(tot_samples)], value=["1"]),
# select_subtarget_box: gr.update(choices=[i for i in range(tot_targets)]+['all'], value=[0]),
cp_page: gr.update(value="1", visible=True),
cp_goto_page: gr.update(visible=True),
cp_goto_next_page: gr.update(visible=True),
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config(dataset: str, config: str) -> dict:
try:
splits = get_parquet_splits(dataset, config)
if not splits:
raise AppError(f"Dataset {dataset} with config {config} has no splits.")
else:
split = splits[0]
return {
**show_dataset_at_config_and_split(dataset, config, split),
cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1),
}
except AppError as err:
return show_error(str(err))
def show_dataset(dataset: str) -> dict:
try:
configs = get_parquet_configs(dataset)
if not configs:
raise AppError(f"Dataset {dataset} has no configs.")
else:
config = configs[0]
return {
**show_dataset_at_config(dataset, config),
cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1),
}
except AppError as err:
return show_error(str(err))
all_outputs = [cp_config, cp_split,
cp_page, cp_goto_page, cp_goto_next_page,
cp_result, cp_info, cp_error,
# select_sample_box, select_subtarget_box,
# select_buttom,
statistics_textbox, plot,
qusetion_id_box,
user_input_box, user_output_box,
submit_info_box,
question_info_textbox_p1, question_info_textbox_p2]
cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs)
cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs)
cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs)
cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs)
cp_goto_next_page.click(show_dataset_at_config_and_split_and_next_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs)
user_submit_button.click(save_score, inputs=[user_name_box, cp_config, qusetion_id_box, score_slider, choose_retain, choose_retain_reason_box], outputs=[submit_info_box])
# select_buttom.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, select_sample_box, select_subtarget_box], outputs=all_outputs)
if __name__ == "__main__":
app = gr.mount_gradio_app(app, demo, path="/")
# host = "127.0.0.1" if os.getenv("DEV") else "0.0.0.0"
host = "0.0.0.0"
# import subprocess
# subprocess.Popen(["python", "test_server.py"])
uvicorn.run(app, host=host, port=7860)
#// 对一下数据 --
#// 部署到服务器上
#// 测试一下功能 --
#// 加一个选择文本框【删除、保留、修改】,加一个意见的文本框 --
#// 横坐标增加一个代表index的轴 -
#// 加一个物理含义的映射 - |