Spaces:
Sleeping
Sleeping
# This file is autogenerated by the command `make fix-copies`, do not edit. | |
from ..file_utils import requires_backends | |
class TensorFlowBenchmarkArguments: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TensorFlowBenchmark: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def tf_top_k_top_p_filtering(*args, **kwargs): | |
requires_backends(tf_top_k_top_p_filtering, ["tf"]) | |
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLayoutLMForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLayoutLMForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLayoutLMForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLayoutLMMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLayoutLMPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFSequenceSummary: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSharedEmbeddings: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def shape_list(*args, **kwargs): | |
requires_backends(shape_list, ["tf"]) | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFAlbertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAlbertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None | |
TF_MODEL_FOR_MASKED_LM_MAPPING = None | |
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None | |
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None | |
TF_MODEL_FOR_PRETRAINING_MAPPING = None | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None | |
TF_MODEL_MAPPING = None | |
TF_MODEL_WITH_LM_HEAD_MAPPING = None | |
class TFAutoModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForCausalLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForSeq2SeqLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFAutoModelWithLMHead: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBartForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBartModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBartPretrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFBertEmbeddings: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertForNextSentencePrediction: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotSmallForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotSmallModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFBlenderbotSmallPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCamembertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCamembertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCamembertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCamembertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCamembertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCamembertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFConvBertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFConvBertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCTRLForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCTRLLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCTRLModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFCTRLPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDistilBertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFDistilBertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDPRContextEncoder: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedContextEncoder: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedQuestionEncoder: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedReader: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRQuestionEncoder: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRReader: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFElectraForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFElectraPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFFlaubertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertForQuestionAnsweringSimple: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFlaubertWithLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFFunnelBaseModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFFunnelPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFGPT2DoubleHeadsModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFGPT2ForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFGPT2LMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFGPT2MainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2Model: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFGPT2PreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFHubertForCTC: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFHubertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFHubertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLEDForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLEDModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLEDPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLongformerForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLongformerSelfAttention: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLxmertForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLxmertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFLxmertVisualFeatureEncoder: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMarianModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMarianMTModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMarianPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMBartForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMBartModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMBartPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFMobileBertForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertForNextSentencePrediction: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForPreTraining: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMobileBertPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFMPNetForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMPNetPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMT5EncoderModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMT5ForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFMT5Model: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFOpenAIGPTDoubleHeadsModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFOpenAIGPTForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFOpenAIGPTLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFOpenAIGPTMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFOpenAIGPTPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFPegasusForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFPegasusModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFPegasusPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRagModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRagPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRagSequenceForGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRagTokenForGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRobertaForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRobertaPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRoFormerForCausalLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFRoFormerPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFT5EncoderModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFT5ForConditionalGeneration: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFT5Model: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFT5PreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFAdaptiveEmbedding: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFTransfoXLLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFTransfoXLMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFTransfoXLPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFWav2Vec2ForCTC: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWav2Vec2Model: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFWav2Vec2PreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLMForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMForQuestionAnsweringSimple: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMWithLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLMRobertaForMaskedLM: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMRobertaForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMRobertaForQuestionAnswering: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMRobertaForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMRobertaForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLMRobertaModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLNetForMultipleChoice: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetForQuestionAnsweringSimple: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetForSequenceClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetForTokenClassification: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetLMHeadModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetMainLayer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class TFXLNetPreTrainedModel: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["tf"]) | |
class AdamWeightDecay: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class GradientAccumulator: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class WarmUp: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def create_optimizer(*args, **kwargs): | |
requires_backends(create_optimizer, ["tf"]) | |
class TFTrainer: | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |