# This file is autogenerated by the command `make fix-copies`, do not edit. from ..file_utils import requires_backends class TensorFlowBenchmarkArguments: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TensorFlowBenchmark: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) def tf_top_k_top_p_filtering(*args, **kwargs): requires_backends(tf_top_k_top_p_filtering, ["tf"]) TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLayoutLMForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLayoutLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLayoutLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLayoutLMMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFLayoutLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLayoutLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFSequenceSummary: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFSharedEmbeddings: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) def shape_list(*args, **kwargs): requires_backends(shape_list, ["tf"]) TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAlbertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFAlbertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFAlbertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAlbertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_MODEL_FOR_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_MASKED_LM_MAPPING = None TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None TF_MODEL_FOR_PRETRAINING_MAPPING = None TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None TF_MODEL_MAPPING = None TF_MODEL_WITH_LM_HEAD_MAPPING = None class TFAutoModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForSeq2SeqLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFAutoModelWithLMHead: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBartPretrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFBertEmbeddings: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotSmallForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotSmallModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFBlenderbotSmallPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCamembertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCamembertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCamembertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCamembertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCamembertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCamembertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFConvBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFConvBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFConvBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCTRLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCTRLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCTRLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFCTRLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDistilBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDistilBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFDistilBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDPRContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDPRPretrainedContextEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDPRPretrainedQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDPRPretrainedReader: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDPRQuestionEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFDPRReader: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFElectraForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFElectraForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFElectraPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFlaubertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFlaubertWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFunnelBaseModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFFunnelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFFunnelPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFGPT2DoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFGPT2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFGPT2LMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFGPT2MainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFGPT2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFGPT2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFHubertForCTC: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFHubertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFHubertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLEDForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLEDModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLEDPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLongformerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLongformerSelfAttention: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLxmertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFLxmertMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFLxmertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLxmertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFLxmertVisualFeatureEncoder: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFMarianModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMarianMTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMarianPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMBartModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMBartPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMobileBertForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFMobileBertForPreTraining: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFMobileBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFMobileBertModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMobileBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMPNetForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFMPNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMPNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMT5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFMT5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFOpenAIGPTDoubleHeadsModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFOpenAIGPTForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFOpenAIGPTLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFOpenAIGPTMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFOpenAIGPTModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFOpenAIGPTPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFPegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFPegasusModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFPegasusPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRagModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRagPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRagSequenceForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFRagTokenForGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFRobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRobertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFRoFormerForCausalLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFRoFormerModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFRoFormerPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFT5EncoderModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFT5Model: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFT5PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAdaptiveEmbedding: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFTransfoXLForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFTransfoXLLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFTransfoXLMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFTransfoXLModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFTransfoXLPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFWav2Vec2ForCTC: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFWav2Vec2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFWav2Vec2PreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFXLMModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMWithLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLMRobertaModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetForTokenClassification: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetLMHeadModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetMainLayer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class TFXLNetModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class TFXLNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["tf"]) class AdamWeightDecay: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class GradientAccumulator: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) class WarmUp: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"]) def create_optimizer(*args, **kwargs): requires_backends(create_optimizer, ["tf"]) class TFTrainer: def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])