Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020, The T5 Authors and HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" mT5 model configuration """ | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MT5Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.MT5Model` or a | |
:class:`~transformers.TFMT5Model`. It is used to instantiate a mT5 model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the mT5 `google/mt5-small <https://huggingface.co/google/mt5-small>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Arguments: | |
vocab_size (:obj:`int`, `optional`, defaults to 250112): | |
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.T5Model` or :class:`~transformers.TFT5Model`. | |
d_model (:obj:`int`, `optional`, defaults to 512): | |
Size of the encoder layers and the pooler layer. | |
d_kv (:obj:`int`, `optional`, defaults to 64): | |
Size of the key, query, value projections per attention head. :obj:`d_kv` has to be equal to :obj:`d_model | |
// num_heads`. | |
d_ff (:obj:`int`, `optional`, defaults to 1024): | |
Size of the intermediate feed forward layer in each :obj:`T5Block`. | |
num_layers (:obj:`int`, `optional`, defaults to 8): | |
Number of hidden layers in the Transformer encoder. | |
num_decoder_layers (:obj:`int`, `optional`): | |
Number of hidden layers in the Transformer decoder. Will use the same value as :obj:`num_layers` if not | |
set. | |
num_heads (:obj:`int`, `optional`, defaults to 6): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32): | |
The number of buckets to use for each attention layer. | |
dropout_rate (:obj:`float`, `optional`, defaults to 0.1): | |
The ratio for all dropout layers. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-6): | |
The epsilon used by the layer normalization layers. | |
initializer_factor (:obj:`float`, `optional`, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
feed_forward_proj (:obj:`string`, `optional`, defaults to :obj:`"gated-gelu"`): | |
Type of feed forward layer to be used. Should be one of :obj:`"relu"` or :obj:`"gated-gelu"`. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
""" | |
model_type = "mt5" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=250112, | |
d_model=512, | |
d_kv=64, | |
d_ff=1024, | |
num_layers=8, | |
num_decoder_layers=None, | |
num_heads=6, | |
relative_attention_num_buckets=32, | |
dropout_rate=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_factor=1.0, | |
feed_forward_proj="gated-gelu", | |
is_encoder_decoder=True, | |
use_cache=True, | |
tokenizer_class="T5Tokenizer", | |
tie_word_embeddings=False, | |
pad_token_id=0, | |
eos_token_id=1, | |
decoder_start_token_id=0, | |
**kwargs | |
): | |
super().__init__( | |
is_encoder_decoder=is_encoder_decoder, | |
tokenizer_class=tokenizer_class, | |
tie_word_embeddings=tie_word_embeddings, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.d_model = d_model | |
self.d_kv = d_kv | |
self.d_ff = d_ff | |
self.num_layers = num_layers | |
self.num_decoder_layers = ( | |
num_decoder_layers if num_decoder_layers is not None else self.num_layers | |
) # default = symmetry | |
self.num_heads = num_heads | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.dropout_rate = dropout_rate | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_factor = initializer_factor | |
self.feed_forward_proj = feed_forward_proj | |
self.use_cache = use_cache | |
def hidden_size(self): | |
return self.d_model | |
def num_attention_heads(self): | |
return self.num_heads | |
def num_hidden_layers(self): | |
return self.num_layers | |