File size: 5,595 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" mT5 model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class MT5Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.MT5Model` or a
    :class:`~transformers.TFMT5Model`. It is used to instantiate a mT5 model according to the specified arguments,
    defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
    to that of the mT5 `google/mt5-small <https://huggingface.co/google/mt5-small>`__ architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.

    Arguments:
        vocab_size (:obj:`int`, `optional`, defaults to 250112):
            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.T5Model` or :class:`~transformers.TFT5Model`.
        d_model (:obj:`int`, `optional`, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (:obj:`int`, `optional`, defaults to 64):
            Size of the key, query, value projections per attention head. :obj:`d_kv` has to be equal to :obj:`d_model
            // num_heads`.
        d_ff (:obj:`int`, `optional`, defaults to 1024):
            Size of the intermediate feed forward layer in each :obj:`T5Block`.
        num_layers (:obj:`int`, `optional`, defaults to 8):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (:obj:`int`, `optional`):
            Number of hidden layers in the Transformer decoder. Will use the same value as :obj:`num_layers` if not
            set.
        num_heads (:obj:`int`, `optional`, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32):
            The number of buckets to use for each attention layer.
        dropout_rate (:obj:`float`, `optional`, defaults to 0.1):
            The ratio for all dropout layers.
        layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (:obj:`float`, `optional`, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (:obj:`string`, `optional`, defaults to :obj:`"gated-gelu"`):
            Type of feed forward layer to be used. Should be one of :obj:`"relu"` or :obj:`"gated-gelu"`.
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    """
    model_type = "mt5"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=250112,
        d_model=512,
        d_kv=64,
        d_ff=1024,
        num_layers=8,
        num_decoder_layers=None,
        num_heads=6,
        relative_attention_num_buckets=32,
        dropout_rate=0.1,
        layer_norm_epsilon=1e-6,
        initializer_factor=1.0,
        feed_forward_proj="gated-gelu",
        is_encoder_decoder=True,
        use_cache=True,
        tokenizer_class="T5Tokenizer",
        tie_word_embeddings=False,
        pad_token_id=0,
        eos_token_id=1,
        decoder_start_token_id=0,
        **kwargs
    ):
        super().__init__(
            is_encoder_decoder=is_encoder_decoder,
            tokenizer_class=tokenizer_class,
            tie_word_embeddings=tie_word_embeddings,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.d_kv = d_kv
        self.d_ff = d_ff
        self.num_layers = num_layers
        self.num_decoder_layers = (
            num_decoder_layers if num_decoder_layers is not None else self.num_layers
        )  # default = symmetry
        self.num_heads = num_heads
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_factor = initializer_factor
        self.feed_forward_proj = feed_forward_proj
        self.use_cache = use_cache

    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.num_heads

    @property
    def num_hidden_layers(self):
        return self.num_layers