Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from contextlib import contextmanager | |
from typing import List, Optional | |
from ...tokenization_utils import BatchEncoding | |
from ...utils import logging | |
from ..xlm_roberta.tokenization_xlm_roberta import XLMRobertaTokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model", | |
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"facebook/mbart-large-en-ro": 1024, | |
"facebook/mbart-large-cc25": 1024, | |
} | |
FAIRSEQ_LANGUAGE_CODES = [ | |
"ar_AR", | |
"cs_CZ", | |
"de_DE", | |
"en_XX", | |
"es_XX", | |
"et_EE", | |
"fi_FI", | |
"fr_XX", | |
"gu_IN", | |
"hi_IN", | |
"it_IT", | |
"ja_XX", | |
"kk_KZ", | |
"ko_KR", | |
"lt_LT", | |
"lv_LV", | |
"my_MM", | |
"ne_NP", | |
"nl_XX", | |
"ro_RO", | |
"ru_RU", | |
"si_LK", | |
"tr_TR", | |
"vi_VN", | |
"zh_CN", | |
] | |
class MBartTokenizer(XLMRobertaTokenizer): | |
""" | |
Construct an MBART tokenizer. | |
:class:`~transformers.MBartTokenizer` is a subclass of :class:`~transformers.XLMRobertaTokenizer`. Refer to | |
superclass :class:`~transformers.XLMRobertaTokenizer` for usage examples and documentation concerning the | |
initialization parameters and other methods. | |
The tokenization method is ``<tokens> <eos> <language code>`` for source language documents, and ``<language code> | |
<tokens> <eos>``` for target language documents. | |
Examples:: | |
>>> from transformers import MBartTokenizer | |
>>> tokenizer = MBartTokenizer.from_pretrained('facebook/mbart-large-en-ro', src_lang="en_XX", tgt_lang="ro_RO") | |
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" | |
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" | |
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt) | |
>>> with tokenizer.as_target_tokenizer(): | |
... labels = tokenizer(expected_translation_romanian, return_tensors="pt") | |
>>> inputs["labels"] = labels["input_ids"] | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
prefix_tokens: List[int] = [] | |
suffix_tokens: List[int] = [] | |
def __init__( | |
self, *args, tokenizer_file=None, src_lang=None, tgt_lang=None, additional_special_tokens=None, **kwargs | |
): | |
super().__init__( | |
*args, | |
tokenizer_file=tokenizer_file, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs, | |
) | |
self.sp_model_size = len(self.sp_model) | |
self.lang_code_to_id = { | |
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) | |
} | |
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} | |
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset | |
self.fairseq_tokens_to_ids.update(self.lang_code_to_id) | |
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} | |
self._additional_special_tokens = list(self.lang_code_to_id.keys()) | |
if additional_special_tokens is not None: | |
# Only add those special tokens if they are not already there. | |
self._additional_special_tokens.extend( | |
[t for t in additional_special_tokens if t not in self._additional_special_tokens] | |
) | |
self._src_lang = src_lang if src_lang is not None else "en_XX" | |
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] | |
self.tgt_lang = tgt_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def vocab_size(self): | |
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token | |
def src_lang(self) -> str: | |
return self._src_lang | |
def src_lang(self, new_src_lang: str) -> None: | |
self._src_lang = new_src_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
prefix_ones = [1] * len(self.prefix_tokens) | |
suffix_ones = [1] * len(self.suffix_tokens) | |
if token_ids_1 is None: | |
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones | |
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An MBART sequence has the following format, where ``X`` represents the sequence: | |
- ``input_ids`` (for encoder) ``X [eos, src_lang_code]`` | |
- ``decoder_input_ids``: (for decoder) ``X [eos, tgt_lang_code]`` | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return self.prefix_tokens + token_ids_0 + self.suffix_tokens | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens | |
def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs): | |
"""Used by translation pipeline, to prepare inputs for the generate function""" | |
if src_lang is None or tgt_lang is None: | |
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") | |
self.src_lang = src_lang | |
inputs = self(raw_inputs, add_special_tokens=True, return_tensors="pt", **extra_kwargs) | |
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) | |
inputs["forced_bos_token_id"] = tgt_lang_id | |
return inputs | |
def prepare_seq2seq_batch( | |
self, | |
src_texts: List[str], | |
src_lang: str = "en_XX", | |
tgt_texts: Optional[List[str]] = None, | |
tgt_lang: str = "ro_RO", | |
**kwargs, | |
) -> BatchEncoding: | |
self.src_lang = src_lang | |
self.tgt_lang = tgt_lang | |
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) | |
def as_target_tokenizer(self): | |
""" | |
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to | |
sequence-to-sequence models that need a slightly different processing for the labels. | |
""" | |
self.set_tgt_lang_special_tokens(self.tgt_lang) | |
yield | |
self.set_src_lang_special_tokens(self.src_lang) | |
def set_src_lang_special_tokens(self, src_lang) -> None: | |
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" | |
self.cur_lang_code = self.lang_code_to_id[src_lang] | |
self.prefix_tokens = [] | |
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] | |
def set_tgt_lang_special_tokens(self, lang: str) -> None: | |
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" | |
self.cur_lang_code = self.lang_code_to_id[lang] | |
self.prefix_tokens = [] | |
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] | |