File size: 9,967 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from contextlib import contextmanager
from typing import List, Optional

from ...tokenization_utils import BatchEncoding
from ...utils import logging
from ..xlm_roberta.tokenization_xlm_roberta import XLMRobertaTokenizer


logger = logging.get_logger(__name__)


VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model",
        "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "facebook/mbart-large-en-ro": 1024,
    "facebook/mbart-large-cc25": 1024,
}

FAIRSEQ_LANGUAGE_CODES = [
    "ar_AR",
    "cs_CZ",
    "de_DE",
    "en_XX",
    "es_XX",
    "et_EE",
    "fi_FI",
    "fr_XX",
    "gu_IN",
    "hi_IN",
    "it_IT",
    "ja_XX",
    "kk_KZ",
    "ko_KR",
    "lt_LT",
    "lv_LV",
    "my_MM",
    "ne_NP",
    "nl_XX",
    "ro_RO",
    "ru_RU",
    "si_LK",
    "tr_TR",
    "vi_VN",
    "zh_CN",
]


class MBartTokenizer(XLMRobertaTokenizer):
    """
    Construct an MBART tokenizer.

    :class:`~transformers.MBartTokenizer` is a subclass of :class:`~transformers.XLMRobertaTokenizer`. Refer to
    superclass :class:`~transformers.XLMRobertaTokenizer` for usage examples and documentation concerning the
    initialization parameters and other methods.

    The tokenization method is ``<tokens> <eos> <language code>`` for source language documents, and ``<language code>
    <tokens> <eos>``` for target language documents.

    Examples::

        >>> from transformers import MBartTokenizer
        >>> tokenizer = MBartTokenizer.from_pretrained('facebook/mbart-large-en-ro', src_lang="en_XX", tgt_lang="ro_RO")
        >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
        >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
        >>> inputs = tokenizer(example_english_phrase, return_tensors="pt)
        >>> with tokenizer.as_target_tokenizer():
        ...     labels = tokenizer(expected_translation_romanian, return_tensors="pt")
        >>> inputs["labels"] = labels["input_ids"]
    """

    vocab_files_names = VOCAB_FILES_NAMES
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP

    prefix_tokens: List[int] = []
    suffix_tokens: List[int] = []

    def __init__(
        self, *args, tokenizer_file=None, src_lang=None, tgt_lang=None, additional_special_tokens=None, **kwargs
    ):
        super().__init__(
            *args,
            tokenizer_file=tokenizer_file,
            src_lang=src_lang,
            tgt_lang=tgt_lang,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )

        self.sp_model_size = len(self.sp_model)
        self.lang_code_to_id = {
            code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
        }
        self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
        self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset

        self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
        self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
        self._additional_special_tokens = list(self.lang_code_to_id.keys())

        if additional_special_tokens is not None:
            # Only add those special tokens if they are not already there.
            self._additional_special_tokens.extend(
                [t for t in additional_special_tokens if t not in self._additional_special_tokens]
            )

        self._src_lang = src_lang if src_lang is not None else "en_XX"
        self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
        self.tgt_lang = tgt_lang
        self.set_src_lang_special_tokens(self._src_lang)

    @property
    def vocab_size(self):
        return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1  # Plus 1 for the mask token

    @property
    def src_lang(self) -> str:
        return self._src_lang

    @src_lang.setter
    def src_lang(self, new_src_lang: str) -> None:
        self._src_lang = new_src_lang
        self.set_src_lang_special_tokens(self._src_lang)

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        prefix_ones = [1] * len(self.prefix_tokens)
        suffix_ones = [1] * len(self.suffix_tokens)
        if token_ids_1 is None:
            return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
        return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. An MBART sequence has the following format, where ``X`` represents the sequence:

        - ``input_ids`` (for encoder) ``X [eos, src_lang_code]``
        - ``decoder_input_ids``: (for decoder) ``X [eos, tgt_lang_code]``

        BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
        separator.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.

        Returns:
            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return self.prefix_tokens + token_ids_0 + self.suffix_tokens
        # We don't expect to process pairs, but leave the pair logic for API consistency
        return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens

    def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs):
        """Used by translation pipeline, to prepare inputs for the generate function"""
        if src_lang is None or tgt_lang is None:
            raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
        self.src_lang = src_lang
        inputs = self(raw_inputs, add_special_tokens=True, return_tensors="pt", **extra_kwargs)
        tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
        inputs["forced_bos_token_id"] = tgt_lang_id
        return inputs

    def prepare_seq2seq_batch(
        self,
        src_texts: List[str],
        src_lang: str = "en_XX",
        tgt_texts: Optional[List[str]] = None,
        tgt_lang: str = "ro_RO",
        **kwargs,
    ) -> BatchEncoding:
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
        return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)

    @contextmanager
    def as_target_tokenizer(self):
        """
        Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
        sequence-to-sequence models that need a slightly different processing for the labels.
        """
        self.set_tgt_lang_special_tokens(self.tgt_lang)
        yield
        self.set_src_lang_special_tokens(self.src_lang)

    def set_src_lang_special_tokens(self, src_lang) -> None:
        """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
        self.cur_lang_code = self.lang_code_to_id[src_lang]
        self.prefix_tokens = []
        self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]

    def set_tgt_lang_special_tokens(self, lang: str) -> None:
        """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
        self.cur_lang_code = self.lang_code_to_id[lang]
        self.prefix_tokens = []
        self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]