Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch LXMERT model. """ | |
import math | |
import os | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, SmoothL1Loss | |
from ...activations import ACT2FN, gelu | |
from ...file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import logging | |
from .configuration_lxmert import LxmertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" | |
_CONFIG_FOR_DOC = "LxmertConfig" | |
_TOKENIZER_FOR_DOC = "LxmertTokenizer" | |
LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"unc-nlp/lxmert-base-uncased", | |
] | |
class GeLU(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return gelu(x) | |
class LxmertModelOutput(ModelOutput): | |
""" | |
Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, | |
visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" | |
encoder") | |
Args: | |
language_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the language encoder. | |
vision_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the visual encoder. | |
pooled_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): | |
Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed | |
by a Linear layer and a Tanh activation function. The Linear | |
language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
""" | |
language_output: Optional[torch.FloatTensor] = None | |
vision_output: Optional[torch.FloatTensor] = None | |
pooled_output: Optional[torch.FloatTensor] = None | |
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LxmertForQuestionAnsweringOutput(ModelOutput): | |
""" | |
Output type of :class:`~transformers.LxmertForQuestionAnswering`. | |
Args: | |
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss.k. | |
question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`, `optional`): | |
Prediction scores of question answering objective (classification). | |
language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
question_answering_score: Optional[torch.FloatTensor] = None | |
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LxmertForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of :class:`~transformers.LxmertForPreTraining`. | |
Args: | |
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss. | |
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
cross_relationship_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): | |
Prediction scores of the textual matching objective (classification) head (scores of True/False | |
continuation before SoftMax). | |
question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`): | |
Prediction scores of question answering objective (classification). | |
language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
""" | |
loss: [torch.FloatTensor] = None | |
prediction_logits: Optional[torch.FloatTensor] = None | |
cross_relationship_score: Optional[torch.FloatTensor] = None | |
question_answering_score: Optional[torch.FloatTensor] = None | |
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n | |
in [ | |
"adam_v", | |
"adam_m", | |
"AdamWeightDecayOptimizer", | |
"AdamWeightDecayOptimizer_1", | |
"global_step", | |
] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
class LxmertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
device = input_ids.device | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
device = inputs_embeds.device | |
seq_length = input_shape[1] | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class LxmertAttention(nn.Module): | |
def __init__(self, config, ctx_dim=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.head_size = self.num_attention_heads * self.attention_head_size | |
# visual_dim = 2048 | |
if ctx_dim is None: | |
ctx_dim = config.hidden_size | |
self.query = nn.Linear(config.hidden_size, self.head_size) | |
self.key = nn.Linear(ctx_dim, self.head_size) | |
self.value = nn.Linear(ctx_dim, self.head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + ( | |
self.num_attention_heads, | |
self.attention_head_size, | |
) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(context) | |
mixed_value_layer = self.value(context) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class LxmertAttentionOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LxmertCrossAttentionLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.att = LxmertAttention(config) | |
self.output = LxmertAttentionOutput(config) | |
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): | |
output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) | |
if output_attentions: | |
attention_probs = output[1] | |
attention_output = self.output(output[0], input_tensor) | |
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) | |
return outputs | |
class LxmertSelfAttentionLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = LxmertAttention(config) | |
self.output = LxmertAttentionOutput(config) | |
def forward(self, input_tensor, attention_mask, output_attentions=False): | |
# Self attention attends to itself, thus keys and queries are the same (input_tensor). | |
output = self.self( | |
input_tensor, | |
input_tensor, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
if output_attentions: | |
attention_probs = output[1] | |
attention_output = self.output(output[0], input_tensor) | |
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) | |
return outputs | |
class LxmertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class LxmertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LxmertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = LxmertSelfAttentionLayer(config) | |
self.intermediate = LxmertIntermediate(config) | |
self.output = LxmertOutput(config) | |
def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) | |
attention_output = outputs[0] | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output,) + outputs[1:] # add attentions if we output them | |
return outputs | |
class LxmertXLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# The cross-attention Layer | |
self.visual_attention = LxmertCrossAttentionLayer(config) | |
# Self-attention Layers | |
self.lang_self_att = LxmertSelfAttentionLayer(config) | |
self.visn_self_att = LxmertSelfAttentionLayer(config) | |
# Intermediate and Output Layers (FFNs) | |
self.lang_inter = LxmertIntermediate(config) | |
self.lang_output = LxmertOutput(config) | |
self.visn_inter = LxmertIntermediate(config) | |
self.visn_output = LxmertOutput(config) | |
def cross_att( | |
self, | |
lang_input, | |
lang_attention_mask, | |
visual_input, | |
visual_attention_mask, | |
output_x_attentions=False, | |
): | |
# Cross Attention | |
lang_att_output = self.visual_attention( | |
lang_input, | |
visual_input, | |
ctx_att_mask=visual_attention_mask, | |
output_attentions=output_x_attentions, | |
) | |
visual_att_output = self.visual_attention( | |
visual_input, | |
lang_input, | |
ctx_att_mask=lang_attention_mask, | |
output_attentions=False, | |
) | |
return lang_att_output, visual_att_output | |
def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask): | |
# Self Attention | |
lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False) | |
visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False) | |
return lang_att_output[0], visual_att_output[0] | |
def output_fc(self, lang_input, visual_input): | |
# FC layers | |
lang_inter_output = self.lang_inter(lang_input) | |
visual_inter_output = self.visn_inter(visual_input) | |
# Layer output | |
lang_output = self.lang_output(lang_inter_output, lang_input) | |
visual_output = self.visn_output(visual_inter_output, visual_input) | |
return lang_output, visual_output | |
def forward( | |
self, | |
lang_feats, | |
lang_attention_mask, | |
visual_feats, | |
visual_attention_mask, | |
output_attentions=False, | |
): | |
lang_att_output, visual_att_output = self.cross_att( | |
lang_input=lang_feats, | |
lang_attention_mask=lang_attention_mask, | |
visual_input=visual_feats, | |
visual_attention_mask=visual_attention_mask, | |
output_x_attentions=output_attentions, | |
) | |
attention_probs = lang_att_output[1:] | |
lang_att_output, visual_att_output = self.self_att( | |
lang_att_output[0], | |
lang_attention_mask, | |
visual_att_output[0], | |
visual_attention_mask, | |
) | |
lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output) | |
return ( | |
( | |
lang_output, | |
visual_output, | |
attention_probs[0], | |
) | |
if output_attentions | |
else (lang_output, visual_output) | |
) | |
class LxmertVisualFeatureEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
feat_dim = config.visual_feat_dim | |
pos_dim = config.visual_pos_dim | |
# Object feature encoding | |
self.visn_fc = nn.Linear(feat_dim, config.hidden_size) | |
self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
# Box position encoding | |
self.box_fc = nn.Linear(pos_dim, config.hidden_size) | |
self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, visual_feats, visual_pos): | |
x = self.visn_fc(visual_feats) | |
x = self.visn_layer_norm(x) | |
y = self.box_fc(visual_pos) | |
y = self.box_layer_norm(y) | |
output = (x + y) / 2 | |
output = self.dropout(output) | |
return output | |
class LxmertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# Obj-level image embedding layer | |
self.visn_fc = LxmertVisualFeatureEncoder(config) | |
self.config = config | |
# Number of layers | |
self.num_l_layers = config.l_layers | |
self.num_x_layers = config.x_layers | |
self.num_r_layers = config.r_layers | |
# Layers | |
# Using self.layer instead of self.l_layer to support loading BERT weights. | |
self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) | |
self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) | |
self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) | |
def forward( | |
self, | |
lang_feats, | |
lang_attention_mask, | |
visual_feats, | |
visual_pos, | |
visual_attention_mask=None, | |
output_attentions=None, | |
): | |
vision_hidden_states = () | |
language_hidden_states = () | |
vision_attentions = () if output_attentions or self.config.output_attentions else None | |
language_attentions = () if output_attentions or self.config.output_attentions else None | |
cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None | |
visual_feats = self.visn_fc(visual_feats, visual_pos) | |
# Run language layers | |
for layer_module in self.layer: | |
l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) | |
lang_feats = l_outputs[0] | |
language_hidden_states = language_hidden_states + (lang_feats,) | |
if language_attentions is not None: | |
language_attentions = language_attentions + (l_outputs[1],) | |
# Run relational layers | |
for layer_module in self.r_layers: | |
v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) | |
visual_feats = v_outputs[0] | |
vision_hidden_states = vision_hidden_states + (visual_feats,) | |
if vision_attentions is not None: | |
vision_attentions = vision_attentions + (v_outputs[1],) | |
# Run cross-modality layers | |
for layer_module in self.x_layers: | |
x_outputs = layer_module( | |
lang_feats, | |
lang_attention_mask, | |
visual_feats, | |
visual_attention_mask, | |
output_attentions=output_attentions, | |
) | |
lang_feats, visual_feats = x_outputs[:2] | |
vision_hidden_states = vision_hidden_states + (visual_feats,) | |
language_hidden_states = language_hidden_states + (lang_feats,) | |
if cross_encoder_attentions is not None: | |
cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) | |
visual_encoder_outputs = ( | |
vision_hidden_states, | |
vision_attentions if output_attentions else None, | |
) | |
lang_encoder_outputs = ( | |
language_hidden_states, | |
language_attentions if output_attentions else None, | |
) | |
return ( | |
visual_encoder_outputs, | |
lang_encoder_outputs, | |
cross_encoder_attentions if output_attentions else None, | |
) | |
class LxmertPooler(nn.Module): | |
def __init__(self, config): | |
super(LxmertPooler, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class LxmertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(LxmertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class LxmertLMPredictionHead(nn.Module): | |
def __init__(self, config, lxmert_model_embedding_weights): | |
super(LxmertLMPredictionHead, self).__init__() | |
self.transform = LxmertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear( | |
lxmert_model_embedding_weights.size(1), | |
lxmert_model_embedding_weights.size(0), | |
bias=False, | |
) | |
self.decoder.weight = lxmert_model_embedding_weights | |
self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0))) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class LxmertVisualAnswerHead(nn.Module): | |
def __init__(self, config, num_labels): | |
super().__init__() | |
hid_dim = config.hidden_size | |
self.logit_fc = nn.Sequential( | |
nn.Linear(hid_dim, hid_dim * 2), | |
GeLU(), | |
nn.LayerNorm(hid_dim * 2, eps=1e-12), | |
nn.Linear(hid_dim * 2, num_labels), | |
) | |
def forward(self, hidden_states): | |
return self.logit_fc(hidden_states) | |
class LxmertVisualObjHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = LxmertPredictionHeadTransform(config) | |
# Decide the use of visual losses | |
visual_losses = {} | |
if config.visual_obj_loss: | |
visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} | |
if config.visual_attr_loss: | |
visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} | |
if config.visual_obj_loss: | |
visual_losses["feat"] = { | |
"shape": (-1, config.visual_feat_dim), | |
"num": config.visual_feat_dim, | |
} | |
self.visual_losses = visual_losses | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder_dict = nn.ModuleDict( | |
{key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses} | |
) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
output = {} | |
for key in self.visual_losses: | |
output[key] = self.decoder_dict[key](hidden_states) | |
return output | |
class LxmertPreTrainingHeads(nn.Module): | |
def __init__(self, config, lxmert_model_embedding_weights): | |
super(LxmertPreTrainingHeads, self).__init__() | |
self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class LxmertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LxmertConfig | |
load_tf_weights = load_tf_weights_in_lxmert | |
base_model_prefix = "lxmert" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
LXMERT_START_DOCSTRING = r""" | |
The LXMERT model was proposed in `LXMERT: Learning Cross-Modality Encoder Representations from Transformers | |
<https://arxiv.org/abs/1908.07490>`__ by Hao Tan and Mohit Bansal. It's a vision and language transformer model, | |
pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome, | |
using a combination of masked language modeling, region of interest feature regression, cross entropy loss for | |
question answering attribute prediction, and object tag prediction. | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.LxmertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
LXMERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.LxmertTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
visual_feats: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝): | |
This input represents visual features. They ROI pooled object features from bounding boxes using a | |
faster-RCNN model) | |
These are currently not provided by the transformers library. | |
visual_pos: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_pos_dim)՝): | |
This input represents spacial features corresponding to their relative (via index) visual features. The | |
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to | |
1. | |
These are currently not provided by the transformers library. | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
visual_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`__ | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class LxmertModel(LxmertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = LxmertEmbeddings(config) | |
self.encoder = LxmertEncoder(config) | |
self.pooler = LxmertPooler(config) | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings.word_embeddings = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
visual_feats=None, | |
visual_pos=None, | |
attention_mask=None, | |
visual_attention_mask=None, | |
token_type_ids=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
assert visual_feats is not None, "`visual_feats` cannot be `None`" | |
assert visual_pos is not None, "`visual_pos` cannot be `None`" | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# Process the visual attention mask | |
if visual_attention_mask is not None: | |
extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype) | |
extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0 | |
else: | |
extended_visual_attention_mask = None | |
# Positional Word Embeddings | |
embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds) | |
# Run Lxmert encoder | |
encoder_outputs = self.encoder( | |
embedding_output, | |
extended_attention_mask, | |
visual_feats=visual_feats, | |
visual_pos=visual_pos, | |
visual_attention_mask=extended_visual_attention_mask, | |
output_attentions=output_attentions, | |
) | |
visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] | |
vision_hidden_states = visual_encoder_outputs[0] | |
language_hidden_states = lang_encoder_outputs[0] | |
all_attentions = () | |
if output_attentions: | |
language_attentions = lang_encoder_outputs[1] | |
vision_attentions = visual_encoder_outputs[1] | |
cross_encoder_attentions = encoder_outputs[2] | |
all_attentions = ( | |
language_attentions, | |
vision_attentions, | |
cross_encoder_attentions, | |
) | |
hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () | |
visual_output = vision_hidden_states[-1] | |
lang_output = language_hidden_states[-1] | |
pooled_output = self.pooler(lang_output) | |
if not return_dict: | |
return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions | |
return LxmertModelOutput( | |
pooled_output=pooled_output, | |
language_output=lang_output, | |
vision_output=visual_output, | |
language_hidden_states=language_hidden_states if output_hidden_states else None, | |
vision_hidden_states=vision_hidden_states if output_hidden_states else None, | |
language_attentions=language_attentions if output_attentions else None, | |
vision_attentions=vision_attentions if output_attentions else None, | |
cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, | |
) | |
class LxmertForPreTraining(LxmertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# Configuration | |
self.config = config | |
self.num_qa_labels = config.num_qa_labels | |
self.visual_loss_normalizer = config.visual_loss_normalizer | |
# Use of pretraining tasks | |
self.task_mask_lm = config.task_mask_lm | |
self.task_obj_predict = config.task_obj_predict | |
self.task_matched = config.task_matched | |
self.task_qa = config.task_qa | |
# Lxmert backbone | |
self.lxmert = LxmertModel(config) | |
# Pre-training heads | |
self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight) | |
if self.task_obj_predict: | |
self.obj_predict_head = LxmertVisualObjHead(config) | |
if self.task_qa: | |
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) | |
# Weight initialization | |
self.init_weights() | |
# Loss functions | |
self.loss_fcts = { | |
"l2": SmoothL1Loss(reduction="none"), | |
"visual_ce": CrossEntropyLoss(reduction="none"), | |
"ce": CrossEntropyLoss(), | |
} | |
visual_losses = {} | |
if config.visual_obj_loss: | |
visual_losses["obj"] = { | |
"shape": (-1,), | |
"num": config.num_object_labels, | |
"loss": "visual_ce", | |
} | |
if config.visual_attr_loss: | |
visual_losses["attr"] = { | |
"shape": (-1,), | |
"num": config.num_attr_labels, | |
"loss": "visual_ce", | |
} | |
if config.visual_obj_loss: | |
visual_losses["feat"] = { | |
"shape": (-1, config.visual_feat_dim), | |
"num": config.visual_feat_dim, | |
"loss": "l2", | |
} | |
self.visual_losses = visual_losses | |
def resize_num_qa_labels(self, num_labels): | |
""" | |
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size | |
will add newly initialized weights. Reducing the size will remove weights from the end | |
Args: | |
num_labels (:obj:`int`, `optional`): | |
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized | |
weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, | |
just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing | |
anything. | |
Return: | |
:obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer | |
""" | |
cur_qa_logit_layer = self.get_qa_logit_layer() | |
if num_labels is None or cur_qa_logit_layer is None: | |
return | |
new_qa_logit_layer = self._resize_qa_labels(num_labels) | |
self.config.num_qa_labels = num_labels | |
self.num_qa_labels = num_labels | |
return new_qa_logit_layer | |
def _resize_qa_labels(self, num_labels): | |
cur_qa_logit_layer = self.get_qa_logit_layer() | |
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) | |
self._set_qa_logit_layer(new_qa_logit_layer) | |
return self.get_qa_logit_layer() | |
def get_qa_logit_layer(self) -> nn.Module: | |
""" | |
Returns the the linear layer that produces question answering logits. | |
Returns: | |
:obj:`nn.Module`: A torch module mapping the question answering prediction hidden states or :obj:`None` if | |
LXMERT does not have a visual answering head. | |
""" | |
if hasattr(self, "answer_head"): | |
return self.answer_head.logit_fc[-1] | |
def _set_qa_logit_layer(self, qa_logit_layer): | |
self.answer_head.logit_fc[-1] = qa_logit_layer | |
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): | |
if num_labels is None: | |
return cur_qa_logit_layer | |
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() | |
if cur_qa_labels == num_labels: | |
return cur_qa_logit_layer | |
# Build new linear output | |
if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) | |
else: | |
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) | |
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) | |
# initialize all new labels | |
self._init_weights(new_qa_logit_layer) | |
# Copy labels from the previous weights | |
num_labels_to_copy = min(cur_qa_labels, num_labels) | |
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] | |
if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] | |
return new_qa_logit_layer | |
def forward( | |
self, | |
input_ids=None, | |
visual_feats=None, | |
visual_pos=None, | |
attention_mask=None, | |
visual_attention_mask=None, | |
token_type_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
obj_labels=None, | |
matched_label=None, | |
ans=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
**kwargs, | |
): | |
r""" | |
labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
obj_labels: (``Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]``, `optional`): | |
each key is named after each one of the visual losses and each element of the tuple is of the shape | |
``(batch_size, num_features)`` and ``(batch_size, num_features, visual_feature_dim)`` for each the label id | |
and the label score respectively | |
matched_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): | |
Labels for computing the whether or not the text input matches the image (classification) loss. Input | |
should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: | |
- 0 indicates that the sentence does not match the image, | |
- 1 indicates that the sentence does match the image. | |
ans: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): | |
a one hot representation hof the correct answer `optional` | |
Returns: | |
""" | |
if "masked_lm_labels" in kwargs: | |
warnings.warn( | |
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
FutureWarning, | |
) | |
labels = kwargs.pop("masked_lm_labels") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
lxmert_output = self.lxmert( | |
input_ids=input_ids, | |
visual_feats=visual_feats, | |
visual_pos=visual_pos, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask, | |
visual_attention_mask=visual_attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
output_attentions=output_attentions, | |
return_dict=return_dict, | |
) | |
lang_output, visual_output, pooled_output = ( | |
lxmert_output[0], | |
lxmert_output[1], | |
lxmert_output[2], | |
) | |
lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) | |
if self.task_qa: | |
answer_score = self.answer_head(pooled_output) | |
else: | |
answer_score = pooled_output[0][0] | |
total_loss = ( | |
None | |
if (labels is None and matched_label is None and obj_labels is None and ans is None) | |
else torch.tensor(0.0, device=device) | |
) | |
if labels is not None and self.task_mask_lm: | |
masked_lm_loss = self.loss_fcts["ce"]( | |
lang_prediction_scores.view(-1, self.config.vocab_size), | |
labels.view(-1), | |
) | |
total_loss += masked_lm_loss | |
if matched_label is not None and self.task_matched: | |
matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1)) | |
total_loss += matched_loss | |
if obj_labels is not None and self.task_obj_predict: | |
total_visual_loss = torch.tensor(0.0, device=input_ids.device) | |
visual_prediction_scores_dict = self.obj_predict_head(visual_output) | |
for key, key_info in self.visual_losses.items(): | |
label, mask_conf = obj_labels[key] | |
output_dim = key_info["num"] | |
loss_fct_name = key_info["loss"] | |
label_shape = key_info["shape"] | |
weight = self.visual_loss_normalizer | |
visual_loss_fct = self.loss_fcts[loss_fct_name] | |
visual_prediction_scores = visual_prediction_scores_dict[key] | |
visual_loss = visual_loss_fct( | |
visual_prediction_scores.view(-1, output_dim), | |
label.view(*label_shape), | |
) | |
if visual_loss.dim() > 1: # Regression Losses | |
visual_loss = visual_loss.mean(1) | |
visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight | |
total_visual_loss += visual_loss | |
total_loss += total_visual_loss | |
if ans is not None and self.task_qa: | |
answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1)) | |
total_loss += answer_loss | |
if not return_dict: | |
output = ( | |
lang_prediction_scores, | |
cross_relationship_score, | |
answer_score, | |
) + lxmert_output[3:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return LxmertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=lang_prediction_scores, | |
cross_relationship_score=cross_relationship_score, | |
question_answering_score=answer_score, | |
language_hidden_states=lxmert_output.language_hidden_states, | |
vision_hidden_states=lxmert_output.vision_hidden_states, | |
language_attentions=lxmert_output.language_attentions, | |
vision_attentions=lxmert_output.vision_attentions, | |
cross_encoder_attentions=lxmert_output.cross_encoder_attentions, | |
) | |
class LxmertForQuestionAnswering(LxmertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# Configuration | |
self.config = config | |
self.num_qa_labels = config.num_qa_labels | |
self.visual_loss_normalizer = config.visual_loss_normalizer | |
# Lxmert backbone | |
self.lxmert = LxmertModel(config) | |
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) | |
# Weight initialization | |
self.init_weights() | |
# Loss function | |
self.loss = CrossEntropyLoss() | |
def resize_num_qa_labels(self, num_labels): | |
""" | |
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size | |
will add newly initialized weights. Reducing the size will remove weights from the end | |
Args: | |
num_labels (:obj:`int`, `optional`): | |
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized | |
weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, | |
just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing | |
anything. | |
Return: | |
:obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer | |
""" | |
cur_qa_logit_layer = self.get_qa_logit_layer() | |
if num_labels is None or cur_qa_logit_layer is None: | |
return | |
new_qa_logit_layer = self._resize_qa_labels(num_labels) | |
self.config.num_qa_labels = num_labels | |
self.num_qa_labels = num_labels | |
return new_qa_logit_layer | |
def _resize_qa_labels(self, num_labels): | |
cur_qa_logit_layer = self.get_qa_logit_layer() | |
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) | |
self._set_qa_logit_layer(new_qa_logit_layer) | |
return self.get_qa_logit_layer() | |
def get_qa_logit_layer(self) -> nn.Module: | |
""" | |
Returns the the linear layer that produces question answering logits | |
Returns: | |
:obj:`nn.Module`: A torch module mapping the question answering prediction hidden states. :obj:`None`: A | |
NoneType object if Lxmert does not have the visual answering head. | |
""" | |
if hasattr(self, "answer_head"): | |
return self.answer_head.logit_fc[-1] | |
def _set_qa_logit_layer(self, qa_logit_layer): | |
self.answer_head.logit_fc[-1] = qa_logit_layer | |
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): | |
if num_labels is None: | |
return cur_qa_logit_layer | |
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() | |
if cur_qa_labels == num_labels: | |
return cur_qa_logit_layer | |
# Build new linear output | |
if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) | |
else: | |
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) | |
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) | |
# initialize all new labels | |
self._init_weights(new_qa_logit_layer) | |
# Copy labels from the previous weights | |
num_labels_to_copy = min(cur_qa_labels, num_labels) | |
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] | |
if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] | |
return new_qa_logit_layer | |
def forward( | |
self, | |
input_ids=None, | |
visual_feats=None, | |
visual_pos=None, | |
attention_mask=None, | |
visual_attention_mask=None, | |
token_type_ids=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): | |
A one-hot representation of the correct answer | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
lxmert_output = self.lxmert( | |
input_ids=input_ids, | |
visual_feats=visual_feats, | |
visual_pos=visual_pos, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask, | |
visual_attention_mask=visual_attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
output_attentions=output_attentions, | |
return_dict=return_dict, | |
) | |
pooled_output = lxmert_output[2] | |
answer_score = self.answer_head(pooled_output) | |
loss = None | |
if labels is not None: | |
loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1)) | |
if not return_dict: | |
output = (answer_score,) + lxmert_output[3:] | |
return (loss,) + output if loss is not None else output | |
return LxmertForQuestionAnsweringOutput( | |
loss=loss, | |
question_answering_score=answer_score, | |
language_hidden_states=lxmert_output.language_hidden_states, | |
vision_hidden_states=lxmert_output.vision_hidden_states, | |
language_attentions=lxmert_output.language_attentions, | |
vision_attentions=lxmert_output.vision_attentions, | |
cross_encoder_attentions=lxmert_output.cross_encoder_attentions, | |
) | |