File size: 64,442 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
# coding=utf-8
# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LXMERT model. """


import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, SmoothL1Loss

from ...activations import ACT2FN, gelu
from ...file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_lxmert import LxmertConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
_CONFIG_FOR_DOC = "LxmertConfig"
_TOKENIZER_FOR_DOC = "LxmertTokenizer"

LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "unc-nlp/lxmert-base-uncased",
]


class GeLU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return gelu(x)


@dataclass
class LxmertModelOutput(ModelOutput):
    """
    Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
    visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
    encoder")


    Args:
        language_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the language encoder.
        vision_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the visual encoder.
        pooled_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
            by a Linear layer and a Tanh activation function. The Linear
        language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
    """

    language_output: Optional[torch.FloatTensor] = None
    vision_output: Optional[torch.FloatTensor] = None
    pooled_output: Optional[torch.FloatTensor] = None
    language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    language_attentions: Optional[Tuple[torch.FloatTensor]] = None
    vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LxmertForQuestionAnsweringOutput(ModelOutput):
    """
    Output type of :class:`~transformers.LxmertForQuestionAnswering`.

    Args:
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
            Total loss as the sum of the masked language modeling loss and the next sequence prediction
            (classification) loss.k.
        question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`, `optional`):
            Prediction scores of question answering objective (classification).
        language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    question_answering_score: Optional[torch.FloatTensor] = None
    language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    language_attentions: Optional[Tuple[torch.FloatTensor]] = None
    vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class LxmertForPreTrainingOutput(ModelOutput):
    """
    Output type of :class:`~transformers.LxmertForPreTraining`.

    Args:
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
            Total loss as the sum of the masked language modeling loss and the next sequence prediction
            (classification) loss.
        prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        cross_relationship_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
            Prediction scores of the textual matching objective (classification) head (scores of True/False
            continuation before SoftMax).
        question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`):
            Prediction scores of question answering objective (classification).
        language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality
            layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`.
        language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
        cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.

    """

    loss: [torch.FloatTensor] = None
    prediction_logits: Optional[torch.FloatTensor] = None
    cross_relationship_score: Optional[torch.FloatTensor] = None
    question_answering_score: Optional[torch.FloatTensor] = None
    language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    language_attentions: Optional[Tuple[torch.FloatTensor]] = None
    vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None


def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(
            n
            in [
                "adam_v",
                "adam_m",
                "AdamWeightDecayOptimizer",
                "AdamWeightDecayOptimizer_1",
                "global_step",
            ]
            for n in name
        ):
            logger.info(f"Skipping {'/'.join(name)}")
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info(f"Skipping {'/'.join(name)}")
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info(f"Initialize PyTorch weight {name}")
        pointer.data = torch.from_numpy(array)
    return model


class LxmertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
            device = input_ids.device
        else:
            input_shape = inputs_embeds.size()[:-1]
            device = inputs_embeds.device
        seq_length = input_shape[1]

        position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
        position_ids = position_ids.unsqueeze(0).expand(input_shape)

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class LxmertAttention(nn.Module):
    def __init__(self, config, ctx_dim=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.head_size = self.num_attention_heads * self.attention_head_size

        # visual_dim = 2048
        if ctx_dim is None:
            ctx_dim = config.hidden_size
        self.query = nn.Linear(config.hidden_size, self.head_size)
        self.key = nn.Linear(ctx_dim, self.head_size)
        self.value = nn.Linear(ctx_dim, self.head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, context, attention_mask=None, output_attentions=False):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(context)
        mixed_value_layer = self.value(context)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs


class LxmertAttentionOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LxmertCrossAttentionLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.att = LxmertAttention(config)
        self.output = LxmertAttentionOutput(config)

    def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False):
        output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions)
        if output_attentions:
            attention_probs = output[1]
        attention_output = self.output(output[0], input_tensor)
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
        return outputs


class LxmertSelfAttentionLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = LxmertAttention(config)
        self.output = LxmertAttentionOutput(config)

    def forward(self, input_tensor, attention_mask, output_attentions=False):
        # Self attention attends to itself, thus keys and queries are the same (input_tensor).
        output = self.self(
            input_tensor,
            input_tensor,
            attention_mask,
            output_attentions=output_attentions,
        )
        if output_attentions:
            attention_probs = output[1]
        attention_output = self.output(output[0], input_tensor)
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
        return outputs


class LxmertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        self.intermediate_act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class LxmertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LxmertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = LxmertSelfAttentionLayer(config)
        self.intermediate = LxmertIntermediate(config)
        self.output = LxmertOutput(config)

    def forward(self, hidden_states, attention_mask=None, output_attentions=False):
        outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
        attention_output = outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + outputs[1:]  # add attentions if we output them
        return outputs


class LxmertXLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        # The cross-attention Layer
        self.visual_attention = LxmertCrossAttentionLayer(config)

        # Self-attention Layers
        self.lang_self_att = LxmertSelfAttentionLayer(config)
        self.visn_self_att = LxmertSelfAttentionLayer(config)

        # Intermediate and Output Layers (FFNs)
        self.lang_inter = LxmertIntermediate(config)
        self.lang_output = LxmertOutput(config)
        self.visn_inter = LxmertIntermediate(config)
        self.visn_output = LxmertOutput(config)

    def cross_att(
        self,
        lang_input,
        lang_attention_mask,
        visual_input,
        visual_attention_mask,
        output_x_attentions=False,
    ):
        # Cross Attention
        lang_att_output = self.visual_attention(
            lang_input,
            visual_input,
            ctx_att_mask=visual_attention_mask,
            output_attentions=output_x_attentions,
        )
        visual_att_output = self.visual_attention(
            visual_input,
            lang_input,
            ctx_att_mask=lang_attention_mask,
            output_attentions=False,
        )
        return lang_att_output, visual_att_output

    def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask):
        # Self Attention
        lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False)
        visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False)
        return lang_att_output[0], visual_att_output[0]

    def output_fc(self, lang_input, visual_input):
        # FC layers
        lang_inter_output = self.lang_inter(lang_input)
        visual_inter_output = self.visn_inter(visual_input)

        # Layer output
        lang_output = self.lang_output(lang_inter_output, lang_input)
        visual_output = self.visn_output(visual_inter_output, visual_input)

        return lang_output, visual_output

    def forward(
        self,
        lang_feats,
        lang_attention_mask,
        visual_feats,
        visual_attention_mask,
        output_attentions=False,
    ):

        lang_att_output, visual_att_output = self.cross_att(
            lang_input=lang_feats,
            lang_attention_mask=lang_attention_mask,
            visual_input=visual_feats,
            visual_attention_mask=visual_attention_mask,
            output_x_attentions=output_attentions,
        )
        attention_probs = lang_att_output[1:]
        lang_att_output, visual_att_output = self.self_att(
            lang_att_output[0],
            lang_attention_mask,
            visual_att_output[0],
            visual_attention_mask,
        )

        lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output)
        return (
            (
                lang_output,
                visual_output,
                attention_probs[0],
            )
            if output_attentions
            else (lang_output, visual_output)
        )


class LxmertVisualFeatureEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        feat_dim = config.visual_feat_dim
        pos_dim = config.visual_pos_dim

        # Object feature encoding
        self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
        self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)

        # Box position encoding
        self.box_fc = nn.Linear(pos_dim, config.hidden_size)
        self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)

        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, visual_feats, visual_pos):
        x = self.visn_fc(visual_feats)
        x = self.visn_layer_norm(x)
        y = self.box_fc(visual_pos)
        y = self.box_layer_norm(y)
        output = (x + y) / 2

        output = self.dropout(output)
        return output


class LxmertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        # Obj-level image embedding layer
        self.visn_fc = LxmertVisualFeatureEncoder(config)
        self.config = config

        # Number of layers
        self.num_l_layers = config.l_layers
        self.num_x_layers = config.x_layers
        self.num_r_layers = config.r_layers

        # Layers
        # Using self.layer instead of self.l_layer to support loading BERT weights.
        self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)])
        self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)])
        self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)])

    def forward(
        self,
        lang_feats,
        lang_attention_mask,
        visual_feats,
        visual_pos,
        visual_attention_mask=None,
        output_attentions=None,
    ):

        vision_hidden_states = ()
        language_hidden_states = ()
        vision_attentions = () if output_attentions or self.config.output_attentions else None
        language_attentions = () if output_attentions or self.config.output_attentions else None
        cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None

        visual_feats = self.visn_fc(visual_feats, visual_pos)

        # Run language layers
        for layer_module in self.layer:
            l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions)
            lang_feats = l_outputs[0]
            language_hidden_states = language_hidden_states + (lang_feats,)
            if language_attentions is not None:
                language_attentions = language_attentions + (l_outputs[1],)

        # Run relational layers
        for layer_module in self.r_layers:
            v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions)
            visual_feats = v_outputs[0]
            vision_hidden_states = vision_hidden_states + (visual_feats,)
            if vision_attentions is not None:
                vision_attentions = vision_attentions + (v_outputs[1],)

        # Run cross-modality layers
        for layer_module in self.x_layers:
            x_outputs = layer_module(
                lang_feats,
                lang_attention_mask,
                visual_feats,
                visual_attention_mask,
                output_attentions=output_attentions,
            )
            lang_feats, visual_feats = x_outputs[:2]
            vision_hidden_states = vision_hidden_states + (visual_feats,)
            language_hidden_states = language_hidden_states + (lang_feats,)
            if cross_encoder_attentions is not None:
                cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
        visual_encoder_outputs = (
            vision_hidden_states,
            vision_attentions if output_attentions else None,
        )
        lang_encoder_outputs = (
            language_hidden_states,
            language_attentions if output_attentions else None,
        )
        return (
            visual_encoder_outputs,
            lang_encoder_outputs,
            cross_encoder_attentions if output_attentions else None,
        )


class LxmertPooler(nn.Module):
    def __init__(self, config):
        super(LxmertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class LxmertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(LxmertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.transform_act_fn = ACT2FN[config.hidden_act]
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class LxmertLMPredictionHead(nn.Module):
    def __init__(self, config, lxmert_model_embedding_weights):
        super(LxmertLMPredictionHead, self).__init__()
        self.transform = LxmertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(
            lxmert_model_embedding_weights.size(1),
            lxmert_model_embedding_weights.size(0),
            bias=False,
        )
        self.decoder.weight = lxmert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class LxmertVisualAnswerHead(nn.Module):
    def __init__(self, config, num_labels):
        super().__init__()
        hid_dim = config.hidden_size
        self.logit_fc = nn.Sequential(
            nn.Linear(hid_dim, hid_dim * 2),
            GeLU(),
            nn.LayerNorm(hid_dim * 2, eps=1e-12),
            nn.Linear(hid_dim * 2, num_labels),
        )

    def forward(self, hidden_states):
        return self.logit_fc(hidden_states)


class LxmertVisualObjHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = LxmertPredictionHeadTransform(config)
        # Decide the use of visual losses
        visual_losses = {}
        if config.visual_obj_loss:
            visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
        if config.visual_attr_loss:
            visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
        if config.visual_obj_loss:
            visual_losses["feat"] = {
                "shape": (-1, config.visual_feat_dim),
                "num": config.visual_feat_dim,
            }
        self.visual_losses = visual_losses

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder_dict = nn.ModuleDict(
            {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses}
        )

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        output = {}
        for key in self.visual_losses:
            output[key] = self.decoder_dict[key](hidden_states)
        return output


class LxmertPreTrainingHeads(nn.Module):
    def __init__(self, config, lxmert_model_embedding_weights):
        super(LxmertPreTrainingHeads, self).__init__()
        self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class LxmertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LxmertConfig
    load_tf_weights = load_tf_weights_in_lxmert
    base_model_prefix = "lxmert"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


LXMERT_START_DOCSTRING = r"""

    The LXMERT model was proposed in `LXMERT: Learning Cross-Modality Encoder Representations from Transformers
    <https://arxiv.org/abs/1908.07490>`__ by Hao Tan and Mohit Bansal. It's a vision and language transformer model,
    pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome,
    using a combination of masked language modeling, region of interest feature regression, cross entropy loss for
    question answering attribute prediction, and object tag prediction.

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.

    Parameters:
        config (:class:`~transformers.LxmertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

LXMERT_INPUTS_DOCSTRING = r"""

    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.LxmertTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        visual_feats: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝):
            This input represents visual features. They ROI pooled object features from bounding boxes using a
            faster-RCNN model)

            These are currently not provided by the transformers library.
        visual_pos: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_pos_dim)՝):
            This input represents spacial features corresponding to their relative (via index) visual features. The
            pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
            1.

            These are currently not provided by the transformers library.
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        visual_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`__
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
    LXMERT_START_DOCSTRING,
)
class LxmertModel(LxmertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = LxmertEmbeddings(config)
        self.encoder = LxmertEncoder(config)
        self.pooler = LxmertPooler(config)
        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings.word_embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=LxmertModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        visual_feats=None,
        visual_pos=None,
        attention_mask=None,
        visual_attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        assert visual_feats is not None, "`visual_feats` cannot be `None`"
        assert visual_pos is not None, "`visual_pos` cannot be `None`"

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Process the visual attention mask
        if visual_attention_mask is not None:
            extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2)
            extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype)
            extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0
        else:
            extended_visual_attention_mask = None

        # Positional Word Embeddings
        embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds)

        # Run Lxmert encoder
        encoder_outputs = self.encoder(
            embedding_output,
            extended_attention_mask,
            visual_feats=visual_feats,
            visual_pos=visual_pos,
            visual_attention_mask=extended_visual_attention_mask,
            output_attentions=output_attentions,
        )

        visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
        vision_hidden_states = visual_encoder_outputs[0]
        language_hidden_states = lang_encoder_outputs[0]

        all_attentions = ()
        if output_attentions:
            language_attentions = lang_encoder_outputs[1]
            vision_attentions = visual_encoder_outputs[1]
            cross_encoder_attentions = encoder_outputs[2]
            all_attentions = (
                language_attentions,
                vision_attentions,
                cross_encoder_attentions,
            )

        hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()

        visual_output = vision_hidden_states[-1]
        lang_output = language_hidden_states[-1]
        pooled_output = self.pooler(lang_output)

        if not return_dict:
            return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions

        return LxmertModelOutput(
            pooled_output=pooled_output,
            language_output=lang_output,
            vision_output=visual_output,
            language_hidden_states=language_hidden_states if output_hidden_states else None,
            vision_hidden_states=vision_hidden_states if output_hidden_states else None,
            language_attentions=language_attentions if output_attentions else None,
            vision_attentions=vision_attentions if output_attentions else None,
            cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
        )


@add_start_docstrings(
    """Lxmert Model with a specified pretraining head on top. """,
    LXMERT_START_DOCSTRING,
)
class LxmertForPreTraining(LxmertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        # Configuration
        self.config = config
        self.num_qa_labels = config.num_qa_labels
        self.visual_loss_normalizer = config.visual_loss_normalizer

        # Use of pretraining tasks
        self.task_mask_lm = config.task_mask_lm
        self.task_obj_predict = config.task_obj_predict
        self.task_matched = config.task_matched
        self.task_qa = config.task_qa

        # Lxmert backbone
        self.lxmert = LxmertModel(config)

        # Pre-training heads
        self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight)
        if self.task_obj_predict:
            self.obj_predict_head = LxmertVisualObjHead(config)
        if self.task_qa:
            self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)

        # Weight initialization
        self.init_weights()

        # Loss functions
        self.loss_fcts = {
            "l2": SmoothL1Loss(reduction="none"),
            "visual_ce": CrossEntropyLoss(reduction="none"),
            "ce": CrossEntropyLoss(),
        }

        visual_losses = {}
        if config.visual_obj_loss:
            visual_losses["obj"] = {
                "shape": (-1,),
                "num": config.num_object_labels,
                "loss": "visual_ce",
            }
        if config.visual_attr_loss:
            visual_losses["attr"] = {
                "shape": (-1,),
                "num": config.num_attr_labels,
                "loss": "visual_ce",
            }
        if config.visual_obj_loss:
            visual_losses["feat"] = {
                "shape": (-1, config.visual_feat_dim),
                "num": config.visual_feat_dim,
                "loss": "l2",
            }
        self.visual_losses = visual_losses

    def resize_num_qa_labels(self, num_labels):
        """
        Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
        will add newly initialized weights. Reducing the size will remove weights from the end

        Args:
            num_labels (:obj:`int`, `optional`):
                New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
                weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`,
                just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing
                anything.

        Return:
            :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
        """

        cur_qa_logit_layer = self.get_qa_logit_layer()
        if num_labels is None or cur_qa_logit_layer is None:
            return
        new_qa_logit_layer = self._resize_qa_labels(num_labels)
        self.config.num_qa_labels = num_labels
        self.num_qa_labels = num_labels

        return new_qa_logit_layer

    def _resize_qa_labels(self, num_labels):
        cur_qa_logit_layer = self.get_qa_logit_layer()
        new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
        self._set_qa_logit_layer(new_qa_logit_layer)
        return self.get_qa_logit_layer()

    def get_qa_logit_layer(self) -> nn.Module:
        """
        Returns the the linear layer that produces question answering logits.

        Returns:
            :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states or :obj:`None` if
            LXMERT does not have a visual answering head.
        """
        if hasattr(self, "answer_head"):
            return self.answer_head.logit_fc[-1]

    def _set_qa_logit_layer(self, qa_logit_layer):
        self.answer_head.logit_fc[-1] = qa_logit_layer

    def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):

        if num_labels is None:
            return cur_qa_logit_layer

        cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
        if cur_qa_labels == num_labels:
            return cur_qa_logit_layer

        # Build new linear output
        if getattr(cur_qa_logit_layer, "bias", None) is not None:
            new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
        else:
            new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)

        new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)

        # initialize all new labels
        self._init_weights(new_qa_logit_layer)

        # Copy labels from the previous weights
        num_labels_to_copy = min(cur_qa_labels, num_labels)
        new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
        if getattr(cur_qa_logit_layer, "bias", None) is not None:
            new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]

        return new_qa_logit_layer

    @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        visual_feats=None,
        visual_pos=None,
        attention_mask=None,
        visual_attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        obj_labels=None,
        matched_label=None,
        ans=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        r"""
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`):
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
        obj_labels: (``Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]``, `optional`):
            each key is named after each one of the visual losses and each element of the tuple is of the shape
            ``(batch_size, num_features)`` and ``(batch_size, num_features, visual_feature_dim)`` for each the label id
            and the label score respectively
        matched_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
            Labels for computing the whether or not the text input matches the image (classification) loss. Input
            should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:

            - 0 indicates that the sentence does not match the image,
            - 1 indicates that the sentence does match the image.
        ans: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`):
            a one hot representation hof the correct answer `optional`

        Returns:
        """

        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                FutureWarning,
            )
            labels = kwargs.pop("masked_lm_labels")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        device = input_ids.device if input_ids is not None else inputs_embeds.device
        lxmert_output = self.lxmert(
            input_ids=input_ids,
            visual_feats=visual_feats,
            visual_pos=visual_pos,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            visual_attention_mask=visual_attention_mask,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )

        lang_output, visual_output, pooled_output = (
            lxmert_output[0],
            lxmert_output[1],
            lxmert_output[2],
        )
        lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
        if self.task_qa:
            answer_score = self.answer_head(pooled_output)
        else:
            answer_score = pooled_output[0][0]

        total_loss = (
            None
            if (labels is None and matched_label is None and obj_labels is None and ans is None)
            else torch.tensor(0.0, device=device)
        )
        if labels is not None and self.task_mask_lm:
            masked_lm_loss = self.loss_fcts["ce"](
                lang_prediction_scores.view(-1, self.config.vocab_size),
                labels.view(-1),
            )
            total_loss += masked_lm_loss
        if matched_label is not None and self.task_matched:
            matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1))
            total_loss += matched_loss
        if obj_labels is not None and self.task_obj_predict:
            total_visual_loss = torch.tensor(0.0, device=input_ids.device)
            visual_prediction_scores_dict = self.obj_predict_head(visual_output)
            for key, key_info in self.visual_losses.items():
                label, mask_conf = obj_labels[key]
                output_dim = key_info["num"]
                loss_fct_name = key_info["loss"]
                label_shape = key_info["shape"]
                weight = self.visual_loss_normalizer
                visual_loss_fct = self.loss_fcts[loss_fct_name]
                visual_prediction_scores = visual_prediction_scores_dict[key]
                visual_loss = visual_loss_fct(
                    visual_prediction_scores.view(-1, output_dim),
                    label.view(*label_shape),
                )
                if visual_loss.dim() > 1:  # Regression Losses
                    visual_loss = visual_loss.mean(1)
                visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight
                total_visual_loss += visual_loss
            total_loss += total_visual_loss
        if ans is not None and self.task_qa:
            answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1))
            total_loss += answer_loss

        if not return_dict:
            output = (
                lang_prediction_scores,
                cross_relationship_score,
                answer_score,
            ) + lxmert_output[3:]
            return ((total_loss,) + output) if total_loss is not None else output

        return LxmertForPreTrainingOutput(
            loss=total_loss,
            prediction_logits=lang_prediction_scores,
            cross_relationship_score=cross_relationship_score,
            question_answering_score=answer_score,
            language_hidden_states=lxmert_output.language_hidden_states,
            vision_hidden_states=lxmert_output.vision_hidden_states,
            language_attentions=lxmert_output.language_attentions,
            vision_attentions=lxmert_output.vision_attentions,
            cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
        )


@add_start_docstrings(
    """Lxmert Model with a visual-answering head on top for downstream QA tasks""",
    LXMERT_START_DOCSTRING,
)
class LxmertForQuestionAnswering(LxmertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        # Configuration
        self.config = config
        self.num_qa_labels = config.num_qa_labels
        self.visual_loss_normalizer = config.visual_loss_normalizer

        # Lxmert backbone
        self.lxmert = LxmertModel(config)

        self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)

        # Weight initialization
        self.init_weights()

        # Loss function
        self.loss = CrossEntropyLoss()

    def resize_num_qa_labels(self, num_labels):
        """
        Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
        will add newly initialized weights. Reducing the size will remove weights from the end

        Args:
            num_labels (:obj:`int`, `optional`):
                New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
                weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`,
                just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing
                anything.

        Return:
            :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
        """

        cur_qa_logit_layer = self.get_qa_logit_layer()
        if num_labels is None or cur_qa_logit_layer is None:
            return
        new_qa_logit_layer = self._resize_qa_labels(num_labels)
        self.config.num_qa_labels = num_labels
        self.num_qa_labels = num_labels

        return new_qa_logit_layer

    def _resize_qa_labels(self, num_labels):
        cur_qa_logit_layer = self.get_qa_logit_layer()
        new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
        self._set_qa_logit_layer(new_qa_logit_layer)
        return self.get_qa_logit_layer()

    def get_qa_logit_layer(self) -> nn.Module:
        """
        Returns the the linear layer that produces question answering logits

        Returns:
            :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states. :obj:`None`: A
            NoneType object if Lxmert does not have the visual answering head.
        """

        if hasattr(self, "answer_head"):
            return self.answer_head.logit_fc[-1]

    def _set_qa_logit_layer(self, qa_logit_layer):
        self.answer_head.logit_fc[-1] = qa_logit_layer

    def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):

        if num_labels is None:
            return cur_qa_logit_layer

        cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
        if cur_qa_labels == num_labels:
            return cur_qa_logit_layer

        # Build new linear output
        if getattr(cur_qa_logit_layer, "bias", None) is not None:
            new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
        else:
            new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)

        new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)

        # initialize all new labels
        self._init_weights(new_qa_logit_layer)

        # Copy labels from the previous weights
        num_labels_to_copy = min(cur_qa_labels, num_labels)
        new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
        if getattr(cur_qa_logit_layer, "bias", None) is not None:
            new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]

        return new_qa_logit_layer

    @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=LxmertForQuestionAnsweringOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        visual_feats=None,
        visual_pos=None,
        attention_mask=None,
        visual_attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`):
            A one-hot representation of the correct answer

        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        lxmert_output = self.lxmert(
            input_ids=input_ids,
            visual_feats=visual_feats,
            visual_pos=visual_pos,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            visual_attention_mask=visual_attention_mask,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )

        pooled_output = lxmert_output[2]
        answer_score = self.answer_head(pooled_output)
        loss = None
        if labels is not None:
            loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1))

        if not return_dict:
            output = (answer_score,) + lxmert_output[3:]
            return (loss,) + output if loss is not None else output

        return LxmertForQuestionAnsweringOutput(
            loss=loss,
            question_answering_score=answer_score,
            language_hidden_states=lxmert_output.language_hidden_states,
            vision_hidden_states=lxmert_output.vision_hidden_states,
            language_attentions=lxmert_output.language_attentions,
            vision_attentions=lxmert_output.vision_attentions,
            cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
        )