Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, | |
# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. | |
# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" I-BERT configuration """ | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", | |
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", | |
"kssteven/ibert-roberta-large-mnli": "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json", | |
} | |
class IBertConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a :class:`~transformers.IBertModel`. It is used to | |
instantiate a I-BERT model according to the specified arguments, | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 30522): | |
Vocabulary size of the I-BERT model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.IBertModel` | |
hidden_size (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (:obj:`int`, `optional`, defaults to 2): | |
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.IBertModel` | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): | |
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, | |
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on | |
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) | |
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to | |
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) | |
<https://arxiv.org/abs/2009.13658>`__. | |
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether to quantize the model or not. | |
force_dequant (:obj:`str`, `optional`, defaults to :obj:`"none"`): | |
Force dequantize specific nonlinear layer. Dequatized layers are then executed with full precision. | |
:obj:`"none"`, :obj:`"gelu"`, :obj:`"softmax"`, :obj:`"layernorm"` and :obj:`"nonlinear"` are supported. As | |
deafult, it is set as :obj:`"none"`, which does not dequantize any layers. Please specify :obj:`"gelu"`, | |
:obj:`"softmax"`, or :obj:`"layernorm"` to dequantize GELU, Softmax, or LayerNorm, respectively. | |
:obj:`"nonlinear"` will dequantize all nonlinear layers, i.e., GELU, Softmax, and LayerNorm. | |
""" | |
model_type = "ibert" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
position_embedding_type="absolute", | |
quant_mode=False, | |
force_dequant="none", | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.quant_mode = quant_mode | |
self.force_dequant = force_dequant | |