File size: 6,985 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# coding=utf-8
# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao,
# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team.
# Copyright (c) 20121, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" I-BERT configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
    "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
    "kssteven/ibert-roberta-large-mnli": "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json",
}


class IBertConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a :class:`~transformers.IBertModel`. It is used to
    instantiate a I-BERT model according to the specified arguments,

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.

    Args:
        vocab_size (:obj:`int`, `optional`, defaults to 30522):
            Vocabulary size of the I-BERT model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.IBertModel`
        hidden_size (:obj:`int`, `optional`, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (:obj:`int`, `optional`, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (:obj:`int`, `optional`, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (:obj:`int`, `optional`, defaults to 2):
            The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.IBertModel`
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
            Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
            :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
            :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
            <https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
            `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
            <https://arxiv.org/abs/2009.13658>`__.
        quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to quantize the model or not.
        force_dequant (:obj:`str`, `optional`, defaults to :obj:`"none"`):
            Force dequantize specific nonlinear layer. Dequatized layers are then executed with full precision.
            :obj:`"none"`, :obj:`"gelu"`, :obj:`"softmax"`, :obj:`"layernorm"` and :obj:`"nonlinear"` are supported. As
            deafult, it is set as :obj:`"none"`, which does not dequantize any layers. Please specify :obj:`"gelu"`,
            :obj:`"softmax"`, or :obj:`"layernorm"` to dequantize GELU, Softmax, or LayerNorm, respectively.
            :obj:`"nonlinear"` will dequantize all nonlinear layers, i.e., GELU, Softmax, and LayerNorm.
    """

    model_type = "ibert"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        position_embedding_type="absolute",
        quant_mode=False,
        force_dequant="none",
        **kwargs
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.quant_mode = quant_mode
        self.force_dequant = force_dequant