Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Hubert model configuration """ | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"facebook/hubert-base-ls960": "https://huggingface.co/facebook/hubert-base-ls960/resolve/main/config.json", | |
# See all Hubert models at https://huggingface.co/models?filter=hubert | |
} | |
class HubertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.HubertModel`. It is used to | |
instantiate an Hubert model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the Hubert | |
`facebook/hubert-base-ls960 <https://huggingface.co/facebook/hubert-base-ls960>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 32): | |
Vocabulary size of the Hubert model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.HubertModel`. Vocabulary size of the model. | |
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of | |
:class:`~transformers.HubertModel`. | |
hidden_size (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
feat_extract_norm (:obj:`str`, `optional`, defaults to :obj:`"group"`): | |
The norm to be applied to 1D convolutional layers in feature extractor. One of :obj:`"group"` for group | |
normalization of only the first 1D convolutional layer or :obj:`"layer"` for layer normalization of all 1D | |
convolutional layers. | |
feat_extract_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout probabilitiy for all 1D convolutional layers in feature extractor. | |
feat_extract_activation (:obj:`str, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the 1D convolutional layers of the feature | |
extractor. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported. | |
conv_dim (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(512, 512, 512, 512, 512, 512, 512)`): | |
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the | |
feature extractor. The length of `conv_dim` defines the number of 1D convolutional layers. | |
conv_stride (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(5, 2, 2, 2, 2, 2, 2)`): | |
A tuple of integers defining the stride of each 1D convolutional layer in the feature extractor. The length | |
of `conv_stride` defines the number of convolutional layers and has to match the the length of `conv_dim`. | |
conv_kernel (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(10, 3, 3, 3, 3, 3, 3)`): | |
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature extractor. The | |
length of `conv_kernel` defines the number of convolutional layers and has to match the the length of | |
`conv_dim`. | |
conv_bias (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether the 1D convolutional layers have a bias. | |
num_conv_pos_embeddings (:obj:`int`, `optional`, defaults to 128): | |
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional | |
embeddings layer. | |
num_conv_pos_embedding_groups (:obj:`int`, `optional`, defaults to 16): | |
Number of groups of 1D convolutional positional embeddings layer. | |
do_stable_layer_norm (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether do apply `stable` layer norm architecture of the Transformer encoder. ``do_stable_layer_norm is | |
True`` corresponds to applying layer norm before the attention layer, whereas ``do_stable_layer_norm is | |
False`` corresponds to applying layer norm after the attention layer. | |
apply_spec_augment (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether to apply *SpecAugment* data augmentation to the outputs of the feature extractor. For reference see | |
`SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition | |
<https://arxiv.org/abs/1904.08779>`__. | |
mask_time_prob (:obj:`float`, `optional`, defaults to 0.05): | |
Propability of each feature vector along the time axis to be chosen as the start of the vector span to be | |
masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature vectors will be | |
masked along the time axis. This is only relevant if ``apply_spec_augment is True``. | |
mask_time_length (:obj:`int`, `optional`, defaults to 10): | |
Length of vector span along the time axis. | |
mask_feature_prob (:obj:`float`, `optional`, defaults to 0.0): | |
Propability of each feature vector along the feature axis to be chosen as the start of the vector span to | |
be masked. Approximately ``mask_time_prob * hidden_size // mask_time_length`` feature vectors will be | |
masked along the time axis. This is only relevant if ``apply_spec_augment is True``. | |
mask_feature_length (:obj:`int`, `optional`, defaults to 10): | |
Length of vector span along the feature axis. | |
ctc_loss_reduction (:obj:`str`, `optional`, defaults to :obj:`"sum"`): | |
Specifies the reduction to apply to the output of ``torch.nn.CTCLoss``. Only relevant when training an | |
instance of :class:`~transformers.HubertForCTC`. | |
ctc_zero_infinity (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether to zero infinite losses and the associated gradients of ``torch.nn.CTCLoss``. Infinite losses | |
mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an | |
instance of :class:`~transformers.HubertForCTC`. | |
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
Example:: | |
>>> from transformers import HubertModel, HubertConfig | |
>>> # Initializing a Hubert facebook/hubert-base-ls960 style configuration | |
>>> configuration = HubertConfig() | |
>>> # Initializing a model from the facebook/hubert-base-ls960 style configuration | |
>>> model = HubertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "hubert" | |
def __init__( | |
self, | |
vocab_size=32, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout=0.1, | |
activation_dropout=0.1, | |
attention_dropout=0.1, | |
feat_proj_dropout=0.1, | |
final_dropout=0.1, | |
layerdrop=0.1, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
feat_extract_norm="group", | |
feat_extract_activation="gelu", | |
conv_dim=(512, 512, 512, 512, 512, 512, 512), | |
conv_stride=(5, 2, 2, 2, 2, 2, 2), | |
conv_kernel=(10, 3, 3, 3, 3, 2, 2), | |
conv_bias=False, | |
num_conv_pos_embeddings=128, | |
num_conv_pos_embedding_groups=16, | |
do_stable_layer_norm=False, | |
apply_spec_augment=True, | |
mask_time_prob=0.05, | |
mask_time_length=10, | |
mask_feature_prob=0.0, | |
mask_feature_length=10, | |
ctc_loss_reduction="sum", | |
ctc_zero_infinity=False, | |
gradient_checkpointing=False, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
**kwargs | |
): | |
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) | |
self.hidden_size = hidden_size | |
self.feat_extract_norm = feat_extract_norm | |
self.feat_extract_activation = feat_extract_activation | |
self.conv_dim = list(conv_dim) | |
self.conv_stride = list(conv_stride) | |
self.conv_kernel = list(conv_kernel) | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.num_feat_extract_layers = len(self.conv_dim) | |
self.num_hidden_layers = num_hidden_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.feat_proj_dropout = feat_proj_dropout | |
self.final_dropout = final_dropout | |
self.layerdrop = layerdrop | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_range = initializer_range | |
self.vocab_size = vocab_size | |
self.do_stable_layer_norm = do_stable_layer_norm | |
self.gradient_checkpointing = gradient_checkpointing | |
if ( | |
(len(self.conv_stride) != self.num_feat_extract_layers) | |
or (len(self.conv_kernel) != self.num_feat_extract_layers) | |
or (len(self.conv_dim) != self.num_feat_extract_layers) | |
): | |
raise ValueError( | |
"Configuration for convolutional layers is incorrect." | |
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," | |
f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" | |
f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." | |
) | |
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 | |
self.apply_spec_augment = apply_spec_augment | |
self.mask_time_prob = mask_time_prob | |
self.mask_time_length = mask_time_length | |
self.mask_feature_prob = mask_feature_prob | |
self.mask_feature_length = mask_feature_length | |
# ctc loss | |
self.ctc_loss_reduction = ctc_loss_reduction | |
self.ctc_zero_infinity = ctc_zero_infinity | |