File size: 12,793 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Hubert model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/hubert-base-ls960": "https://huggingface.co/facebook/hubert-base-ls960/resolve/main/config.json",
    # See all Hubert models at https://huggingface.co/models?filter=hubert
}


class HubertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.HubertModel`. It is used to
    instantiate an Hubert model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Hubert
    `facebook/hubert-base-ls960 <https://huggingface.co/facebook/hubert-base-ls960>`__ architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        vocab_size (:obj:`int`, `optional`, defaults to 32):
            Vocabulary size of the Hubert model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.HubertModel`. Vocabulary size of the model.
            Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
            :class:`~transformers.HubertModel`.
        hidden_size (:obj:`int`, `optional`, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (:obj:`int`, `optional`, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (:obj:`int`, `optional`, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
        hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        feat_extract_norm (:obj:`str`, `optional`, defaults to :obj:`"group"`):
            The norm to be applied to 1D convolutional layers in feature extractor. One of :obj:`"group"` for group
            normalization of only the first 1D convolutional layer or :obj:`"layer"` for layer normalization of all 1D
            convolutional layers.
        feat_extract_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout probabilitiy for all 1D convolutional layers in feature extractor.
        feat_extract_activation (:obj:`str, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
        conv_dim (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature extractor. The length of `conv_dim` defines the number of 1D convolutional layers.
        conv_stride (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature extractor. The length
            of `conv_stride` defines the number of convolutional layers and has to match the the length of `conv_dim`.
        conv_kernel (:obj:`Tuple[int]`, `optional`, defaults to :obj:`(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature extractor. The
            length of `conv_kernel` defines the number of convolutional layers and has to match the the length of
            `conv_dim`.
        conv_bias (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (:obj:`int`, `optional`, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (:obj:`int`, `optional`, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        do_stable_layer_norm (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether do apply `stable` layer norm architecture of the Transformer encoder. ``do_stable_layer_norm is
            True`` corresponds to applying layer norm before the attention layer, whereas ``do_stable_layer_norm is
            False`` corresponds to applying layer norm after the attention layer.
        apply_spec_augment (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature extractor. For reference see
            `SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
            <https://arxiv.org/abs/1904.08779>`__.
        mask_time_prob (:obj:`float`, `optional`, defaults to 0.05):
            Propability of each feature vector along the time axis to be chosen as the start of the vector span to be
            masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature vectors will be
            masked along the time axis. This is only relevant if ``apply_spec_augment is True``.
        mask_time_length (:obj:`int`, `optional`, defaults to 10):
            Length of vector span along the time axis.
        mask_feature_prob (:obj:`float`, `optional`, defaults to 0.0):
            Propability of each feature vector along the feature axis to be chosen as the start of the vector span to
            be masked. Approximately ``mask_time_prob * hidden_size // mask_time_length`` feature vectors will be
            masked along the time axis. This is only relevant if ``apply_spec_augment is True``.
        mask_feature_length (:obj:`int`, `optional`, defaults to 10):
            Length of vector span along the feature axis.
        ctc_loss_reduction (:obj:`str`, `optional`, defaults to :obj:`"sum"`):
            Specifies the reduction to apply to the output of ``torch.nn.CTCLoss``. Only relevant when training an
            instance of :class:`~transformers.HubertForCTC`.
        ctc_zero_infinity (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to zero infinite losses and the associated gradients of ``torch.nn.CTCLoss``. Infinite losses
            mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an
            instance of :class:`~transformers.HubertForCTC`.
        gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.

    Example::

        >>> from transformers import HubertModel, HubertConfig

        >>> # Initializing a Hubert facebook/hubert-base-ls960 style configuration
        >>> configuration = HubertConfig()

        >>> # Initializing a model from the facebook/hubert-base-ls960 style configuration
        >>> model = HubertModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
    """
    model_type = "hubert"

    def __init__(
        self,
        vocab_size=32,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout=0.1,
        activation_dropout=0.1,
        attention_dropout=0.1,
        feat_proj_dropout=0.1,
        final_dropout=0.1,
        layerdrop=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        feat_extract_norm="group",
        feat_extract_activation="gelu",
        conv_dim=(512, 512, 512, 512, 512, 512, 512),
        conv_stride=(5, 2, 2, 2, 2, 2, 2),
        conv_kernel=(10, 3, 3, 3, 3, 2, 2),
        conv_bias=False,
        num_conv_pos_embeddings=128,
        num_conv_pos_embedding_groups=16,
        do_stable_layer_norm=False,
        apply_spec_augment=True,
        mask_time_prob=0.05,
        mask_time_length=10,
        mask_feature_prob=0.0,
        mask_feature_length=10,
        ctc_loss_reduction="sum",
        ctc_zero_infinity=False,
        gradient_checkpointing=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        **kwargs
    ):
        super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = list(conv_dim)
        self.conv_stride = list(conv_stride)
        self.conv_kernel = list(conv_kernel)
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_feat_extract_layers = len(self.conv_dim)
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.feat_proj_dropout = feat_proj_dropout
        self.final_dropout = final_dropout
        self.layerdrop = layerdrop
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.gradient_checkpointing = gradient_checkpointing

        if (
            (len(self.conv_stride) != self.num_feat_extract_layers)
            or (len(self.conv_kernel) != self.num_feat_extract_layers)
            or (len(self.conv_dim) != self.num_feat_extract_layers)
        ):
            raise ValueError(
                "Configuration for convolutional layers is incorrect."
                "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
                f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
                f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`."
            )

        # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
        self.apply_spec_augment = apply_spec_augment
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
        self.mask_feature_prob = mask_feature_prob
        self.mask_feature_length = mask_feature_length

        # ctc loss
        self.ctc_loss_reduction = ctc_loss_reduction
        self.ctc_zero_infinity = ctc_zero_infinity