Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for FSMT.""" | |
import json | |
import os | |
import re | |
import unicodedata | |
from typing import Dict, List, Optional, Tuple | |
import sacremoses as sm | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"src_vocab_file": "vocab-src.json", | |
"tgt_vocab_file": "vocab-tgt.json", | |
"merges_file": "merges.txt", | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"src_vocab_file": { | |
"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-src.json" | |
}, | |
"tgt_vocab_file": { | |
"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-tgt.json" | |
}, | |
"merges_file": {"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/merges.txt"}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"stas/tiny-wmt19-en-de": 1024} | |
PRETRAINED_INIT_CONFIGURATION = { | |
"stas/tiny-wmt19-en-de": { | |
"langs": ["en", "de"], | |
"model_max_length": 1024, | |
"special_tokens_map_file": None, | |
"full_tokenizer_file": None, | |
} | |
} | |
def get_pairs(word): | |
""" | |
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length | |
strings) | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
def replace_unicode_punct(text): | |
""" | |
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl | |
""" | |
text = text.replace(",", ",") | |
text = re.sub(r"。\s*", ". ", text) | |
text = text.replace("、", ",") | |
text = text.replace("”", '"') | |
text = text.replace("“", '"') | |
text = text.replace("∶", ":") | |
text = text.replace(":", ":") | |
text = text.replace("?", "?") | |
text = text.replace("《", '"') | |
text = text.replace("》", '"') | |
text = text.replace(")", ")") | |
text = text.replace("!", "!") | |
text = text.replace("(", "(") | |
text = text.replace(";", ";") | |
text = text.replace("1", "1") | |
text = text.replace("」", '"') | |
text = text.replace("「", '"') | |
text = text.replace("0", "0") | |
text = text.replace("3", "3") | |
text = text.replace("2", "2") | |
text = text.replace("5", "5") | |
text = text.replace("6", "6") | |
text = text.replace("9", "9") | |
text = text.replace("7", "7") | |
text = text.replace("8", "8") | |
text = text.replace("4", "4") | |
text = re.sub(r".\s*", ". ", text) | |
text = text.replace("~", "~") | |
text = text.replace("’", "'") | |
text = text.replace("…", "...") | |
text = text.replace("━", "-") | |
text = text.replace("〈", "<") | |
text = text.replace("〉", ">") | |
text = text.replace("【", "[") | |
text = text.replace("】", "]") | |
text = text.replace("%", "%") | |
return text | |
def remove_non_printing_char(text): | |
""" | |
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl | |
""" | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat.startswith("C"): | |
continue | |
output.append(char) | |
return "".join(output) | |
# Porting notes: | |
# this one is modeled after XLMTokenizer | |
# | |
# added: | |
# - src_vocab_file, | |
# - tgt_vocab_file, | |
# - langs, | |
class FSMTTokenizer(PreTrainedTokenizer): | |
""" | |
Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: | |
- Moses preprocessing and tokenization. | |
- Normalizing all inputs text. | |
- The arguments ``special_tokens`` and the function ``set_special_tokens``, can be used to add additional symbols | |
(like "__classify__") to a vocabulary. | |
- The argument :obj:`langs` defines a pair of languages. | |
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. | |
Users should refer to this superclass for more information regarding those methods. | |
Args: | |
langs (:obj:`List[str]`): | |
A list of two languages to translate from and to, for instance :obj:`["en", "ru"]`. | |
src_vocab_file (:obj:`str`): | |
File containing the vocabulary for the source language. | |
tgt_vocab_file (:obj:`st`): | |
File containing the vocabulary for the target language. | |
merges_file (:obj:`str`): | |
File containing the merges. | |
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to lowercase the input when tokenizing. | |
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
.. note:: | |
When building a sequence using special tokens, this is not the token that is used for the beginning of | |
sequence. The token used is the :obj:`cls_token`. | |
sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
langs=None, | |
src_vocab_file=None, | |
tgt_vocab_file=None, | |
merges_file=None, | |
do_lower_case=False, | |
unk_token="<unk>", | |
bos_token="<s>", | |
sep_token="</s>", | |
pad_token="<pad>", | |
**kwargs | |
): | |
super().__init__( | |
langs=langs, | |
src_vocab_file=src_vocab_file, | |
tgt_vocab_file=tgt_vocab_file, | |
merges_file=merges_file, | |
do_lower_case=do_lower_case, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
**kwargs, | |
) | |
self.src_vocab_file = src_vocab_file | |
self.tgt_vocab_file = tgt_vocab_file | |
self.merges_file = merges_file | |
self.do_lower_case = do_lower_case | |
# cache of sm.MosesPunctNormalizer instance | |
self.cache_moses_punct_normalizer = dict() | |
# cache of sm.MosesTokenizer instance | |
self.cache_moses_tokenizer = dict() | |
self.cache_moses_detokenizer = dict() | |
if langs and len(langs) == 2: | |
self.src_lang, self.tgt_lang = langs | |
else: | |
raise ValueError( | |
f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. " | |
"Usually that means that tokenizer can't find a mapping for the given model path " | |
"in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer." | |
) | |
with open(src_vocab_file, encoding="utf-8") as src_vocab_handle: | |
self.encoder = json.load(src_vocab_handle) | |
with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle: | |
tgt_vocab = json.load(tgt_vocab_handle) | |
self.decoder = {v: k for k, v in tgt_vocab.items()} | |
with open(merges_file, encoding="utf-8") as merges_handle: | |
merges = merges_handle.read().split("\n")[:-1] | |
merges = [tuple(merge.split()[:2]) for merge in merges] | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {} | |
# hack override | |
def get_vocab(self) -> Dict[str, int]: | |
return self.get_src_vocab() | |
# hack override | |
def vocab_size(self) -> int: | |
return self.src_vocab_size | |
def moses_punct_norm(self, text, lang): | |
if lang not in self.cache_moses_punct_normalizer: | |
punct_normalizer = sm.MosesPunctNormalizer(lang=lang) | |
self.cache_moses_punct_normalizer[lang] = punct_normalizer | |
return self.cache_moses_punct_normalizer[lang].normalize(text) | |
def moses_tokenize(self, text, lang): | |
if lang not in self.cache_moses_tokenizer: | |
moses_tokenizer = sm.MosesTokenizer(lang=lang) | |
self.cache_moses_tokenizer[lang] = moses_tokenizer | |
return self.cache_moses_tokenizer[lang].tokenize( | |
text, aggressive_dash_splits=True, return_str=False, escape=True | |
) | |
def moses_detokenize(self, tokens, lang): | |
if lang not in self.cache_moses_tokenizer: | |
moses_detokenizer = sm.MosesDetokenizer(lang=self.tgt_lang) | |
self.cache_moses_detokenizer[lang] = moses_detokenizer | |
return self.cache_moses_detokenizer[lang].detokenize(tokens) | |
def moses_pipeline(self, text, lang): | |
text = replace_unicode_punct(text) | |
text = self.moses_punct_norm(text, lang) | |
text = remove_non_printing_char(text) | |
return text | |
def src_vocab_size(self): | |
return len(self.encoder) | |
def tgt_vocab_size(self): | |
return len(self.decoder) | |
def get_src_vocab(self): | |
return dict(self.encoder, **self.added_tokens_encoder) | |
def get_tgt_vocab(self): | |
return dict(self.decoder, **self.added_tokens_decoder) | |
def bpe(self, token): | |
word = tuple(token[:-1]) + (token[-1] + "</w>",) | |
if token in self.cache: | |
return self.cache[token] | |
pairs = get_pairs(word) | |
if not pairs: | |
return token + "</w>" | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
else: | |
new_word.extend(word[i:j]) | |
i = j | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = " ".join(word) | |
if word == "\n </w>": | |
word = "\n</w>" | |
self.cache[token] = word | |
return word | |
def _tokenize(self, text, lang="en", bypass_tokenizer=False): | |
""" | |
Tokenize a string given language code using Moses. | |
Details of tokenization: | |
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses | |
- Install with `pip install sacremoses` | |
Args: | |
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported | |
languages. However, we don't enforce it. | |
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) | |
(bool). If True, we only apply BPE. | |
Returns: | |
List of tokens. | |
""" | |
# ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en | |
# if lang != self.src_lang: | |
# raise ValueError(f"Expected lang={self.src_lang}, but got {lang}") | |
lang = self.src_lang | |
if self.do_lower_case: | |
text = text.lower() | |
if bypass_tokenizer: | |
text = text.split() | |
else: | |
text = self.moses_pipeline(text, lang=lang) | |
text = self.moses_tokenize(text, lang=lang) | |
split_tokens = [] | |
for token in text: | |
if token: | |
split_tokens.extend([t for t in self.bpe(token).split(" ")]) | |
return split_tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.decoder.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
# remove BPE | |
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] | |
tokens = "".join(tokens).split() | |
# detokenize | |
text = self.moses_detokenize(tokens, self.tgt_lang) | |
return text | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A FAIRSEQ Transformer sequence has the following format: | |
- single sequence: ``<s> X </s>`` | |
- pair of sequences: ``<s> A </s> B </s>`` | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
sep = [self.sep_token_id] | |
# no bos used in fairseq | |
if token_ids_1 is None: | |
return token_ids_0 + sep | |
return token_ids_0 + sep + token_ids_1 + sep | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
# no bos used in fairseq | |
if token_ids_1 is not None: | |
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
return ([0] * len(token_ids_0)) + [1] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ | |
Transformer sequence pair mask has the following format: | |
:: | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given | |
sequence(s). | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An | |
FAIRSEQ_TRANSFORMER sequence pair mask has the following format: | |
""" | |
sep = [self.sep_token_id] | |
# no bos used in fairseq | |
if token_ids_1 is None: | |
return len(token_ids_0 + sep) * [0] | |
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
src_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"] | |
) | |
tgt_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"] | |
) | |
merges_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
) | |
with open(src_vocab_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(self.encoder, ensure_ascii=False)) | |
with open(tgt_vocab_file, "w", encoding="utf-8") as f: | |
tgt_vocab = {v: k for k, v in self.decoder.items()} | |
f.write(json.dumps(tgt_vocab, ensure_ascii=False)) | |
index = 0 | |
with open(merges_file, "w", encoding="utf-8") as writer: | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!" | |
) | |
index = token_index | |
writer.write(" ".join(bpe_tokens) + "\n") | |
index += 1 | |
return src_vocab_file, tgt_vocab_file, merges_file | |