File size: 19,528 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FSMT."""


import json
import os
import re
import unicodedata
from typing import Dict, List, Optional, Tuple

import sacremoses as sm

from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "src_vocab_file": "vocab-src.json",
    "tgt_vocab_file": "vocab-tgt.json",
    "merges_file": "merges.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "src_vocab_file": {
        "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-src.json"
    },
    "tgt_vocab_file": {
        "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-tgt.json"
    },
    "merges_file": {"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/merges.txt"},
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"stas/tiny-wmt19-en-de": 1024}
PRETRAINED_INIT_CONFIGURATION = {
    "stas/tiny-wmt19-en-de": {
        "langs": ["en", "de"],
        "model_max_length": 1024,
        "special_tokens_map_file": None,
        "full_tokenizer_file": None,
    }
}


def get_pairs(word):
    """
    Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
    strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


def replace_unicode_punct(text):
    """
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    """
    text = text.replace(",", ",")
    text = re.sub(r"。\s*", ". ", text)
    text = text.replace("、", ",")
    text = text.replace("”", '"')
    text = text.replace("“", '"')
    text = text.replace("∶", ":")
    text = text.replace(":", ":")
    text = text.replace("?", "?")
    text = text.replace("《", '"')
    text = text.replace("》", '"')
    text = text.replace(")", ")")
    text = text.replace("!", "!")
    text = text.replace("(", "(")
    text = text.replace(";", ";")
    text = text.replace("1", "1")
    text = text.replace("」", '"')
    text = text.replace("「", '"')
    text = text.replace("0", "0")
    text = text.replace("3", "3")
    text = text.replace("2", "2")
    text = text.replace("5", "5")
    text = text.replace("6", "6")
    text = text.replace("9", "9")
    text = text.replace("7", "7")
    text = text.replace("8", "8")
    text = text.replace("4", "4")
    text = re.sub(r".\s*", ". ", text)
    text = text.replace("~", "~")
    text = text.replace("’", "'")
    text = text.replace("…", "...")
    text = text.replace("━", "-")
    text = text.replace("〈", "<")
    text = text.replace("〉", ">")
    text = text.replace("【", "[")
    text = text.replace("】", "]")
    text = text.replace("%", "%")
    return text


def remove_non_printing_char(text):
    """
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    """
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith("C"):
            continue
        output.append(char)
    return "".join(output)


# Porting notes:
# this one is modeled after XLMTokenizer
#
# added:
# - src_vocab_file,
# - tgt_vocab_file,
# - langs,


class FSMTTokenizer(PreTrainedTokenizer):
    """
    Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:

    - Moses preprocessing and tokenization.
    - Normalizing all inputs text.
    - The arguments ``special_tokens`` and the function ``set_special_tokens``, can be used to add additional symbols
      (like "__classify__") to a vocabulary.
    - The argument :obj:`langs` defines a pair of languages.

    This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
    Users should refer to this superclass for more information regarding those methods.

    Args:
        langs (:obj:`List[str]`):
            A list of two languages to translate from and to, for instance :obj:`["en", "ru"]`.
        src_vocab_file (:obj:`str`):
            File containing the vocabulary for the source language.
        tgt_vocab_file (:obj:`st`):
            File containing the vocabulary for the target language.
        merges_file (:obj:`str`):
            File containing the merges.
        do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to lowercase the input when tokenizing.
        unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`):
            The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

            .. note::

                When building a sequence using special tokens, this is not the token that is used for the beginning of
                sequence. The token used is the :obj:`cls_token`.
        sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
            The token used for padding, for example when batching sequences of different lengths.

    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        langs=None,
        src_vocab_file=None,
        tgt_vocab_file=None,
        merges_file=None,
        do_lower_case=False,
        unk_token="<unk>",
        bos_token="<s>",
        sep_token="</s>",
        pad_token="<pad>",
        **kwargs
    ):
        super().__init__(
            langs=langs,
            src_vocab_file=src_vocab_file,
            tgt_vocab_file=tgt_vocab_file,
            merges_file=merges_file,
            do_lower_case=do_lower_case,
            unk_token=unk_token,
            bos_token=bos_token,
            sep_token=sep_token,
            pad_token=pad_token,
            **kwargs,
        )

        self.src_vocab_file = src_vocab_file
        self.tgt_vocab_file = tgt_vocab_file
        self.merges_file = merges_file
        self.do_lower_case = do_lower_case

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.cache_moses_detokenizer = dict()

        if langs and len(langs) == 2:
            self.src_lang, self.tgt_lang = langs
        else:
            raise ValueError(
                f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. "
                "Usually that means that tokenizer can't find a mapping for the given model path "
                "in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer."
            )

        with open(src_vocab_file, encoding="utf-8") as src_vocab_handle:
            self.encoder = json.load(src_vocab_handle)
        with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle:
            tgt_vocab = json.load(tgt_vocab_handle)
            self.decoder = {v: k for k, v in tgt_vocab.items()}
        with open(merges_file, encoding="utf-8") as merges_handle:
            merges = merges_handle.read().split("\n")[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}

    # hack override
    def get_vocab(self) -> Dict[str, int]:
        return self.get_src_vocab()

    # hack override
    @property
    def vocab_size(self) -> int:
        return self.src_vocab_size

    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        return self.cache_moses_punct_normalizer[lang].normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        return self.cache_moses_tokenizer[lang].tokenize(
            text, aggressive_dash_splits=True, return_str=False, escape=True
        )

    def moses_detokenize(self, tokens, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_detokenizer = sm.MosesDetokenizer(lang=self.tgt_lang)
            self.cache_moses_detokenizer[lang] = moses_detokenizer
        return self.cache_moses_detokenizer[lang].detokenize(tokens)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

    @property
    def src_vocab_size(self):
        return len(self.encoder)

    @property
    def tgt_vocab_size(self):
        return len(self.decoder)

    def get_src_vocab(self):
        return dict(self.encoder, **self.added_tokens_encoder)

    def get_tgt_vocab(self):
        return dict(self.decoder, **self.added_tokens_decoder)

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + "</w>",)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token + "</w>"

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                except ValueError:
                    new_word.extend(word[i:])
                    break
                else:
                    new_word.extend(word[i:j])
                    i = j

                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = " ".join(word)
        if word == "\n  </w>":
            word = "\n</w>"
        self.cache[token] = word
        return word

    def _tokenize(self, text, lang="en", bypass_tokenizer=False):
        """
        Tokenize a string given language code using Moses.

        Details of tokenization:

            - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`

        Args:

            - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
              languages. However, we don't enforce it.
            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
              (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
        # ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en
        # if lang != self.src_lang:
        #     raise ValueError(f"Expected lang={self.src_lang}, but got {lang}")
        lang = self.src_lang

        if self.do_lower_case:
            text = text.lower()

        if bypass_tokenizer:
            text = text.split()
        else:
            text = self.moses_pipeline(text, lang=lang)
            text = self.moses_tokenize(text, lang=lang)

        split_tokens = []
        for token in text:
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(" ")])

        return split_tokens

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.decoder.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""

        # remove BPE
        tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
        tokens = "".join(tokens).split()
        # detokenize
        text = self.moses_detokenize(tokens, self.tgt_lang)
        return text

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A FAIRSEQ Transformer sequence has the following format:

        - single sequence: ``<s> X </s>``
        - pair of sequences: ``<s> A </s> B </s>``

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.

        Returns:
            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
        """
        sep = [self.sep_token_id]

        # no bos used in fairseq
        if token_ids_1 is None:
            return token_ids_0 + sep
        return token_ids_0 + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )
        # no bos used in fairseq
        if token_ids_1 is not None:
            return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return ([0] * len(token_ids_0)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
        Transformer sequence pair mask has the following format:

        ::

            0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
            | first sequence    | second sequence |

        If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.

        Returns:
            :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
            sequence(s).

        Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An
        FAIRSEQ_TRANSFORMER sequence pair mask has the following format:
        """
        sep = [self.sep_token_id]

        # no bos used in fairseq
        if token_ids_1 is None:
            return len(token_ids_0 + sep) * [0]
        return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return

        src_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"]
        )
        tgt_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"]
        )
        merges_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
        )

        with open(src_vocab_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        with open(tgt_vocab_file, "w", encoding="utf-8") as f:
            tgt_vocab = {v: k for k, v in self.decoder.items()}
            f.write(json.dumps(tgt_vocab, ensure_ascii=False))

        index = 0
        with open(merges_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
                        " Please check that the tokenizer is not corrupted!"
                    )
                    index = token_index
                writer.write(" ".join(bpe_tokens) + "\n")
                index += 1

        return src_vocab_file, tgt_vocab_file, merges_file