Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Flaubert, based on XLM.""" | |
import unicodedata | |
import six | |
from ...utils import logging | |
from ..xlm.tokenization_xlm import XLMTokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"merges_file": "merges.txt", | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/vocab.json", | |
"flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/vocab.json", | |
"flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/vocab.json", | |
"flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/vocab.json", | |
}, | |
"merges_file": { | |
"flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/merges.txt", | |
"flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/merges.txt", | |
"flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/merges.txt", | |
"flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/merges.txt", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"flaubert/flaubert_small_cased": 512, | |
"flaubert/flaubert_base_uncased": 512, | |
"flaubert/flaubert_base_cased": 512, | |
"flaubert/flaubert_large_cased": 512, | |
} | |
PRETRAINED_INIT_CONFIGURATION = { | |
"flaubert/flaubert_small_cased": {"do_lowercase": False}, | |
"flaubert/flaubert_base_uncased": {"do_lowercase": True}, | |
"flaubert/flaubert_base_cased": {"do_lowercase": False}, | |
"flaubert/flaubert_large_cased": {"do_lowercase": False}, | |
} | |
def convert_to_unicode(text): | |
""" | |
Converts `text` to Unicode (if it's not already), assuming UTF-8 input. | |
""" | |
# six_ensure_text is copied from https://github.com/benjaminp/six | |
def six_ensure_text(s, encoding="utf-8", errors="strict"): | |
if isinstance(s, six.binary_type): | |
return s.decode(encoding, errors) | |
elif isinstance(s, six.text_type): | |
return s | |
else: | |
raise TypeError(f"not expecting type '{type(s)}'") | |
return six_ensure_text(text, encoding="utf-8", errors="ignore") | |
class FlaubertTokenizer(XLMTokenizer): | |
""" | |
Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: | |
- Moses preprocessing and tokenization. | |
- Normalizing all inputs text. | |
- The arguments ``special_tokens`` and the function ``set_special_tokens``, can be used to add additional symbols | |
(like "__classify__") to a vocabulary. | |
- The argument :obj:`do_lowercase` controls lower casing (automatically set for pretrained vocabularies). | |
This tokenizer inherits from :class:`~transformers.XLMTokenizer`. Please check the superclass for usage examples | |
and documentation regarding arguments. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__(self, do_lowercase=False, **kwargs): | |
super().__init__(**kwargs) | |
self.do_lowercase = do_lowercase | |
self.do_lowercase_and_remove_accent = False | |
def preprocess_text(self, text): | |
text = text.replace("``", '"').replace("''", '"') | |
text = convert_to_unicode(text) | |
text = unicodedata.normalize("NFC", text) | |
if self.do_lowercase: | |
text = text.lower() | |
return text | |
def _tokenize(self, text, bypass_tokenizer=False): | |
""" | |
Tokenize a string given language code using Moses. | |
Details of tokenization: | |
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses | |
- Install with `pip install sacremoses` | |
Args: | |
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) | |
(bool). If True, we only apply BPE. | |
Returns: | |
List of tokens. | |
""" | |
lang = "fr" | |
if lang and self.lang2id and lang not in self.lang2id: | |
logger.error( | |
"Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model." | |
) | |
if bypass_tokenizer: | |
text = text.split() | |
else: | |
text = self.preprocess_text(text) | |
text = self.moses_pipeline(text, lang=lang) | |
text = self.moses_tokenize(text, lang=lang) | |
split_tokens = [] | |
for token in text: | |
if token: | |
split_tokens.extend([t for t in self.bpe(token).split(" ")]) | |
return split_tokens | |