File size: 5,634 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Flaubert, based on XLM."""


import unicodedata

import six

from ...utils import logging
from ..xlm.tokenization_xlm import XLMTokenizer


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.json",
    "merges_file": "merges.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/vocab.json",
        "flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/vocab.json",
        "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/vocab.json",
        "flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/vocab.json",
    },
    "merges_file": {
        "flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/merges.txt",
        "flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/merges.txt",
        "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/merges.txt",
        "flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/merges.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "flaubert/flaubert_small_cased": 512,
    "flaubert/flaubert_base_uncased": 512,
    "flaubert/flaubert_base_cased": 512,
    "flaubert/flaubert_large_cased": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "flaubert/flaubert_small_cased": {"do_lowercase": False},
    "flaubert/flaubert_base_uncased": {"do_lowercase": True},
    "flaubert/flaubert_base_cased": {"do_lowercase": False},
    "flaubert/flaubert_large_cased": {"do_lowercase": False},
}


def convert_to_unicode(text):
    """
    Converts `text` to Unicode (if it's not already), assuming UTF-8 input.
    """
    # six_ensure_text is copied from https://github.com/benjaminp/six
    def six_ensure_text(s, encoding="utf-8", errors="strict"):
        if isinstance(s, six.binary_type):
            return s.decode(encoding, errors)
        elif isinstance(s, six.text_type):
            return s
        else:
            raise TypeError(f"not expecting type '{type(s)}'")

    return six_ensure_text(text, encoding="utf-8", errors="ignore")


class FlaubertTokenizer(XLMTokenizer):
    """
    Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:

    - Moses preprocessing and tokenization.
    - Normalizing all inputs text.
    - The arguments ``special_tokens`` and the function ``set_special_tokens``, can be used to add additional symbols
      (like "__classify__") to a vocabulary.
    - The argument :obj:`do_lowercase` controls lower casing (automatically set for pretrained vocabularies).

    This tokenizer inherits from :class:`~transformers.XLMTokenizer`. Please check the superclass for usage examples
    and documentation regarding arguments.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(self, do_lowercase=False, **kwargs):
        super().__init__(**kwargs)
        self.do_lowercase = do_lowercase
        self.do_lowercase_and_remove_accent = False

    def preprocess_text(self, text):
        text = text.replace("``", '"').replace("''", '"')
        text = convert_to_unicode(text)
        text = unicodedata.normalize("NFC", text)

        if self.do_lowercase:
            text = text.lower()

        return text

    def _tokenize(self, text, bypass_tokenizer=False):
        """
        Tokenize a string given language code using Moses.

        Details of tokenization:

            - [sacremoses](https://github.com/alvations/sacremoses): port of Moses
            - Install with `pip install sacremoses`

        Args:

            - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
              (bool). If True, we only apply BPE.

        Returns:
            List of tokens.
        """
        lang = "fr"
        if lang and self.lang2id and lang not in self.lang2id:
            logger.error(
                "Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model."
            )

        if bypass_tokenizer:
            text = text.split()
        else:
            text = self.preprocess_text(text)
            text = self.moses_pipeline(text, lang=lang)
            text = self.moses_tokenize(text, lang=lang)

        split_tokens = []
        for token in text:
            if token:
                split_tokens.extend([t for t in self.bpe(token).split(" ")])

        return split_tokens