Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ CLIP model configuration """ | |
| import copy | |
| from ...configuration_utils import PretrainedConfig | |
| from ...utils import logging | |
| logger = logging.get_logger(__name__) | |
| CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json", | |
| # See all CLIP models at https://huggingface.co/models?filter=clip | |
| } | |
| class CLIPTextConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to | |
| instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the CLIP | |
| `openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture. | |
| Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
| outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
| Args: | |
| vocab_size (:obj:`int`, `optional`, defaults to 49408): | |
| Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by | |
| the :obj:`inputs_ids` passed when calling :class:`~transformers.CLIPModel`. | |
| hidden_size (:obj:`int`, `optional`, defaults to 512): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (:obj:`int`, `optional`, defaults to 2048): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (:obj:`int`, `optional`, defaults to 8): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| max_position_embeddings (:obj:`int`, `optional`, defaults to 77): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, | |
| :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported. | |
| layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| dropout (:obj:`float`, `optional`, defaults to 0.0): | |
| The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
| initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (:obj:`float`, `optional`, defaults to 1): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
| Example:: | |
| >>> from transformers import CLIPTextModel, CLIPTextConfig | |
| >>> # Initializing a CLIPTextModel with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPTextConfig() | |
| >>> # Initializing a CLIPTextConfig from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPTextModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| """ | |
| model_type = "clip_text_model" | |
| def __init__( | |
| self, | |
| vocab_size=49408, | |
| hidden_size=512, | |
| intermediate_size=2048, | |
| num_hidden_layers=12, | |
| num_attention_heads=8, | |
| max_position_embeddings=77, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=0.00001, | |
| dropout=0.0, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| gradient_checkpointing=False, | |
| **kwargs | |
| ): | |
| super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.max_position_embeddings = max_position_embeddings | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.gradient_checkpointing = gradient_checkpointing | |
| class CLIPVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to | |
| instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the CLIP | |
| `openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture. | |
| Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
| outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
| Args: | |
| hidden_size (:obj:`int`, `optional`, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| image_size (:obj:`int`, `optional`, defaults to 224): | |
| The size (resolution) of each image. | |
| patch_size (:obj:`int`, `optional`, defaults to 32): | |
| The size (resolution) of each patch. | |
| hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, | |
| :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported. | |
| layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| dropout (:obj:`float`, `optional`, defaults to 0.0): | |
| The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (:obj:`float`, `optional`, defaults to 1): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
| Example:: | |
| >>> from transformers import CLIPVisionModel, CLIPVisionConfig | |
| >>> # Initializing a CLIPVisionModel with openai/clip-vit-base-patch32 style configuration | |
| >>> configuration = CLIPVisionConfig() | |
| >>> # Initializing a CLIPVisionModel model from the openai/clip-vit-base-patch32 style configuration | |
| >>> model = CLIPVisionModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| """ | |
| model_type = "clip_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| image_size=224, | |
| patch_size=32, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=0.00001, | |
| dropout=0.0, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| gradient_checkpointing=False, | |
| **kwargs | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.gradient_checkpointing = gradient_checkpointing | |
| class CLIPConfig(PretrainedConfig): | |
| r""" | |
| :class:`~transformers.CLIPConfig` is the configuration class to store the configuration of a | |
| :class:`~transformers.CLIPModel`. It is used to instantiate CLIP model according to the specified arguments, | |
| defining the text model and vision model configs. | |
| Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
| outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
| Args: | |
| text_config_dict (:obj:`dict`, `optional`): | |
| Dictionary of configuration options used to initialize :class:`~transformers.CLIPTextConfig`. | |
| vision_config_dict (:obj:`dict`, `optional`): | |
| Dictionary of configuration options used to initialize :class:`~transformers.CLIPVisionConfig`. | |
| projection_dim (:obj:`int`, `optional`, defaults to 512): | |
| Dimentionality of text and vision projection layers. | |
| kwargs (`optional`): | |
| Dictionary of keyword arguments. | |
| """ | |
| model_type = "clip" | |
| is_composition = True | |
| def __init__(self, text_config_dict=None, vision_config_dict=None, projection_dim=512, **kwargs): | |
| super().__init__(text_config_dict=text_config_dict, vision_config_dict=vision_config_dict, **kwargs) | |
| if text_config_dict is None: | |
| text_config_dict = {} | |
| logger.info("text_config_dict is None. Initializing the CLIPTextConfig with default values.") | |
| if vision_config_dict is None: | |
| vision_config_dict = {} | |
| logger.info("vision_config_dict is None. initializing the CLIPVisionConfig with default values.") | |
| self.text_config = CLIPTextConfig(**text_config_dict) | |
| self.vision_config = CLIPVisionConfig(**vision_config_dict) | |
| self.projection_dim = projection_dim | |
| self.initializer_factor = 1.0 | |
| def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs): | |
| r""" | |
| Instantiate a :class:`~transformers.CLIPConfig` (or a derived class) from clip text model configuration and | |
| clip vision model configuration. | |
| Returns: | |
| :class:`CLIPConfig`: An instance of a configuration object | |
| """ | |
| return cls(text_config_dict=text_config.to_dict(), vision_config_dict=vision_config.to_dict(), **kwargs) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default | |
| :meth:`~transformers.PretrainedConfig.to_dict`. | |
| Returns: | |
| :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = copy.deepcopy(self.__dict__) | |
| output["text_config"] = self.text_config.to_dict() | |
| output["vision_config"] = self.vision_config.to_dict() | |
| output["model_type"] = self.__class__.model_type | |
| return output | |