Kaizouku's picture
Upload 564 files
2260825 verified
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIP model configuration """
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json",
# See all CLIP models at https://huggingface.co/models?filter=clip
}
class CLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to
instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLIP
`openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 49408):
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
the :obj:`inputs_ids` passed when calling :class:`~transformers.CLIPModel`.
hidden_size (:obj:`int`, `optional`, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (:obj:`int`, `optional`, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (:obj:`float`, `optional`, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import CLIPTextModel, CLIPTextConfig
>>> # Initializing a CLIPTextModel with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextConfig from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "clip_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=0.00001,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
gradient_checkpointing=False,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.gradient_checkpointing = gradient_checkpointing
class CLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to
instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLIP
`openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (:obj:`int`, `optional`, defaults to 224):
The size (resolution) of each image.
patch_size (:obj:`int`, `optional`, defaults to 32):
The size (resolution) of each patch.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (:obj:`float`, `optional`, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import CLIPVisionModel, CLIPVisionConfig
>>> # Initializing a CLIPVisionModel with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel model from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "clip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=0.00001,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
gradient_checkpointing=False,
**kwargs
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.gradient_checkpointing = gradient_checkpointing
class CLIPConfig(PretrainedConfig):
r"""
:class:`~transformers.CLIPConfig` is the configuration class to store the configuration of a
:class:`~transformers.CLIPModel`. It is used to instantiate CLIP model according to the specified arguments,
defining the text model and vision model configs.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
text_config_dict (:obj:`dict`, `optional`):
Dictionary of configuration options used to initialize :class:`~transformers.CLIPTextConfig`.
vision_config_dict (:obj:`dict`, `optional`):
Dictionary of configuration options used to initialize :class:`~transformers.CLIPVisionConfig`.
projection_dim (:obj:`int`, `optional`, defaults to 512):
Dimentionality of text and vision projection layers.
kwargs (`optional`):
Dictionary of keyword arguments.
"""
model_type = "clip"
is_composition = True
def __init__(self, text_config_dict=None, vision_config_dict=None, projection_dim=512, **kwargs):
super().__init__(text_config_dict=text_config_dict, vision_config_dict=vision_config_dict, **kwargs)
if text_config_dict is None:
text_config_dict = {}
logger.info("text_config_dict is None. Initializing the CLIPTextConfig with default values.")
if vision_config_dict is None:
vision_config_dict = {}
logger.info("vision_config_dict is None. initializing the CLIPVisionConfig with default values.")
self.text_config = CLIPTextConfig(**text_config_dict)
self.vision_config = CLIPVisionConfig(**vision_config_dict)
self.projection_dim = projection_dim
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
r"""
Instantiate a :class:`~transformers.CLIPConfig` (or a derived class) from clip text model configuration and
clip vision model configuration.
Returns:
:class:`CLIPConfig`: An instance of a configuration object
"""
return cls(text_config_dict=text_config.to_dict(), vision_config_dict=vision_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default
:meth:`~transformers.PretrainedConfig.to_dict`.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["text_config"] = self.text_config.to_dict()
output["vision_config"] = self.vision_config.to_dict()
output["model_type"] = self.__class__.model_type
return output