Spaces:
Sleeping
Sleeping
File size: 13,419 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIP model configuration """
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json",
# See all CLIP models at https://huggingface.co/models?filter=clip
}
class CLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to
instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLIP
`openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 49408):
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
the :obj:`inputs_ids` passed when calling :class:`~transformers.CLIPModel`.
hidden_size (:obj:`int`, `optional`, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (:obj:`int`, `optional`, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (:obj:`float`, `optional`, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import CLIPTextModel, CLIPTextConfig
>>> # Initializing a CLIPTextModel with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextConfig from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "clip_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=0.00001,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
gradient_checkpointing=False,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.gradient_checkpointing = gradient_checkpointing
class CLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.CLIPModel`. It is used to
instantiate an CLIP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLIP
`openai/clip-vit-base-patch32 <https://huggingface.co/openai/clip-vit-base-patch32>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (:obj:`int`, `optional`, defaults to 224):
The size (resolution) of each image.
patch_size (:obj:`int`, `optional`, defaults to 32):
The size (resolution) of each patch.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` :obj:`"quick_gelu"` are supported.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (:obj:`float`, `optional`, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import CLIPVisionModel, CLIPVisionConfig
>>> # Initializing a CLIPVisionModel with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel model from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "clip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=0.00001,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
gradient_checkpointing=False,
**kwargs
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.gradient_checkpointing = gradient_checkpointing
class CLIPConfig(PretrainedConfig):
r"""
:class:`~transformers.CLIPConfig` is the configuration class to store the configuration of a
:class:`~transformers.CLIPModel`. It is used to instantiate CLIP model according to the specified arguments,
defining the text model and vision model configs.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
text_config_dict (:obj:`dict`, `optional`):
Dictionary of configuration options used to initialize :class:`~transformers.CLIPTextConfig`.
vision_config_dict (:obj:`dict`, `optional`):
Dictionary of configuration options used to initialize :class:`~transformers.CLIPVisionConfig`.
projection_dim (:obj:`int`, `optional`, defaults to 512):
Dimentionality of text and vision projection layers.
kwargs (`optional`):
Dictionary of keyword arguments.
"""
model_type = "clip"
is_composition = True
def __init__(self, text_config_dict=None, vision_config_dict=None, projection_dim=512, **kwargs):
super().__init__(text_config_dict=text_config_dict, vision_config_dict=vision_config_dict, **kwargs)
if text_config_dict is None:
text_config_dict = {}
logger.info("text_config_dict is None. Initializing the CLIPTextConfig with default values.")
if vision_config_dict is None:
vision_config_dict = {}
logger.info("vision_config_dict is None. initializing the CLIPVisionConfig with default values.")
self.text_config = CLIPTextConfig(**text_config_dict)
self.vision_config = CLIPVisionConfig(**vision_config_dict)
self.projection_dim = projection_dim
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
r"""
Instantiate a :class:`~transformers.CLIPConfig` (or a derived class) from clip text model configuration and
clip vision model configuration.
Returns:
:class:`CLIPConfig`: An instance of a configuration object
"""
return cls(text_config_dict=text_config.to_dict(), vision_config_dict=vision_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default
:meth:`~transformers.PretrainedConfig.to_dict`.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["text_config"] = self.text_config.to_dict()
output["vision_config"] = self.vision_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
|