Spaces:
Sleeping
Sleeping
# flake8: noqa | |
# There's no way to ignore "F401 '...' imported but unused" warnings in this | |
# module, but to preserve other warnings. So, don't check this module at all. | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING | |
from ...file_utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available | |
_import_structure = { | |
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], | |
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], | |
} | |
if is_tokenizers_available(): | |
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"] | |
if is_torch_available(): | |
_import_structure["modeling_bert"] = [ | |
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"BertForMaskedLM", | |
"BertForMultipleChoice", | |
"BertForNextSentencePrediction", | |
"BertForPreTraining", | |
"BertForQuestionAnswering", | |
"BertForSequenceClassification", | |
"BertForTokenClassification", | |
"BertLayer", | |
"BertLMHeadModel", | |
"BertModel", | |
"BertPreTrainedModel", | |
"load_tf_weights_in_bert", | |
] | |
if is_tf_available(): | |
_import_structure["modeling_tf_bert"] = [ | |
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFBertEmbeddings", | |
"TFBertForMaskedLM", | |
"TFBertForMultipleChoice", | |
"TFBertForNextSentencePrediction", | |
"TFBertForPreTraining", | |
"TFBertForQuestionAnswering", | |
"TFBertForSequenceClassification", | |
"TFBertForTokenClassification", | |
"TFBertLMHeadModel", | |
"TFBertMainLayer", | |
"TFBertModel", | |
"TFBertPreTrainedModel", | |
] | |
if is_flax_available(): | |
_import_structure["modeling_flax_bert"] = [ | |
"FlaxBertForMaskedLM", | |
"FlaxBertForMultipleChoice", | |
"FlaxBertForNextSentencePrediction", | |
"FlaxBertForPreTraining", | |
"FlaxBertForQuestionAnswering", | |
"FlaxBertForSequenceClassification", | |
"FlaxBertForTokenClassification", | |
"FlaxBertModel", | |
"FlaxBertPreTrainedModel", | |
] | |
if TYPE_CHECKING: | |
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig | |
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer | |
if is_tokenizers_available(): | |
from .tokenization_bert_fast import BertTokenizerFast | |
if is_torch_available(): | |
from .modeling_bert import ( | |
BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BertForMaskedLM, | |
BertForMultipleChoice, | |
BertForNextSentencePrediction, | |
BertForPreTraining, | |
BertForQuestionAnswering, | |
BertForSequenceClassification, | |
BertForTokenClassification, | |
BertLayer, | |
BertLMHeadModel, | |
BertModel, | |
BertPreTrainedModel, | |
load_tf_weights_in_bert, | |
) | |
if is_tf_available(): | |
from .modeling_tf_bert import ( | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFBertEmbeddings, | |
TFBertForMaskedLM, | |
TFBertForMultipleChoice, | |
TFBertForNextSentencePrediction, | |
TFBertForPreTraining, | |
TFBertForQuestionAnswering, | |
TFBertForSequenceClassification, | |
TFBertForTokenClassification, | |
TFBertLMHeadModel, | |
TFBertMainLayer, | |
TFBertModel, | |
TFBertPreTrainedModel, | |
) | |
if is_flax_available(): | |
from .modeling_flax_bert import ( | |
FlaxBertForMaskedLM, | |
FlaxBertForMultipleChoice, | |
FlaxBertForNextSentencePrediction, | |
FlaxBertForPreTraining, | |
FlaxBertForQuestionAnswering, | |
FlaxBertForSequenceClassification, | |
FlaxBertForTokenClassification, | |
FlaxBertModel, | |
FlaxBertPreTrainedModel, | |
) | |
else: | |
import sys | |
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) | |