File size: 4,611 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...file_utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available


_import_structure = {
    "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"],
    "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
}

if is_tokenizers_available():
    _import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]

if is_torch_available():
    _import_structure["modeling_bert"] = [
        "BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "BertForMaskedLM",
        "BertForMultipleChoice",
        "BertForNextSentencePrediction",
        "BertForPreTraining",
        "BertForQuestionAnswering",
        "BertForSequenceClassification",
        "BertForTokenClassification",
        "BertLayer",
        "BertLMHeadModel",
        "BertModel",
        "BertPreTrainedModel",
        "load_tf_weights_in_bert",
    ]

if is_tf_available():
    _import_structure["modeling_tf_bert"] = [
        "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "TFBertEmbeddings",
        "TFBertForMaskedLM",
        "TFBertForMultipleChoice",
        "TFBertForNextSentencePrediction",
        "TFBertForPreTraining",
        "TFBertForQuestionAnswering",
        "TFBertForSequenceClassification",
        "TFBertForTokenClassification",
        "TFBertLMHeadModel",
        "TFBertMainLayer",
        "TFBertModel",
        "TFBertPreTrainedModel",
    ]

if is_flax_available():
    _import_structure["modeling_flax_bert"] = [
        "FlaxBertForMaskedLM",
        "FlaxBertForMultipleChoice",
        "FlaxBertForNextSentencePrediction",
        "FlaxBertForPreTraining",
        "FlaxBertForQuestionAnswering",
        "FlaxBertForSequenceClassification",
        "FlaxBertForTokenClassification",
        "FlaxBertModel",
        "FlaxBertPreTrainedModel",
    ]

if TYPE_CHECKING:
    from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
    from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer

    if is_tokenizers_available():
        from .tokenization_bert_fast import BertTokenizerFast

    if is_torch_available():
        from .modeling_bert import (
            BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BertForMaskedLM,
            BertForMultipleChoice,
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
            BertLayer,
            BertLMHeadModel,
            BertModel,
            BertPreTrainedModel,
            load_tf_weights_in_bert,
        )

    if is_tf_available():
        from .modeling_tf_bert import (
            TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFBertEmbeddings,
            TFBertForMaskedLM,
            TFBertForMultipleChoice,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertLMHeadModel,
            TFBertMainLayer,
            TFBertModel,
            TFBertPreTrainedModel,
        )

    if is_flax_available():
        from .modeling_flax_bert import (
            FlaxBertForMaskedLM,
            FlaxBertForMultipleChoice,
            FlaxBertForNextSentencePrediction,
            FlaxBertForPreTraining,
            FlaxBertForQuestionAnswering,
            FlaxBertForSequenceClassification,
            FlaxBertForTokenClassification,
            FlaxBertModel,
            FlaxBertPreTrainedModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)