Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Feature extraction saving/loading class for common feature extractors. | |
""" | |
import copy | |
import json | |
import os | |
from collections import UserDict | |
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
from .file_utils import ( | |
FEATURE_EXTRACTOR_NAME, | |
TensorType, | |
_is_jax, | |
_is_numpy, | |
_is_torch_device, | |
cached_path, | |
hf_bucket_url, | |
is_flax_available, | |
is_offline_mode, | |
is_remote_url, | |
is_tf_available, | |
is_torch_available, | |
torch_required, | |
) | |
from .utils import logging | |
if TYPE_CHECKING: | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821 | |
class BatchFeature(UserDict): | |
r""" | |
Holds the output of the :meth:`~transformers.SequenceFeatureExtractor.pad` and feature extractor specific | |
``__call__`` methods. | |
This class is derived from a python dictionary and can be used as a dictionary. | |
Args: | |
data (:obj:`dict`): | |
Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', | |
etc.). | |
tensor_type (:obj:`Union[None, str, TensorType]`, `optional`): | |
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at | |
initialization. | |
""" | |
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): | |
super().__init__(data) | |
self.convert_to_tensors(tensor_type=tensor_type) | |
def __getitem__(self, item: str) -> Union[Any]: | |
""" | |
If the key is a string, returns the value of the dict associated to :obj:`key` ('input_values', | |
'attention_mask', etc.). | |
""" | |
if isinstance(item, str): | |
return self.data[item] | |
else: | |
raise KeyError("Indexing with integers is not available when using Python based feature extractors") | |
def __getattr__(self, item: str): | |
try: | |
return self.data[item] | |
except KeyError: | |
raise AttributeError | |
def __getstate__(self): | |
return {"data": self.data} | |
def __setstate__(self, state): | |
if "data" in state: | |
self.data = state["data"] | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.keys | |
def keys(self): | |
return self.data.keys() | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.values | |
def values(self): | |
return self.data.values() | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.items | |
def items(self): | |
return self.data.items() | |
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): | |
""" | |
Convert the inner content to tensors. | |
Args: | |
tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`): | |
The type of tensors to use. If :obj:`str`, should be one of the values of the enum | |
:class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done. | |
""" | |
if tensor_type is None: | |
return self | |
# Convert to TensorType | |
if not isinstance(tensor_type, TensorType): | |
tensor_type = TensorType(tensor_type) | |
# Get a function reference for the correct framework | |
if tensor_type == TensorType.TENSORFLOW: | |
if not is_tf_available(): | |
raise ImportError( | |
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." | |
) | |
import tensorflow as tf | |
as_tensor = tf.constant | |
is_tensor = tf.is_tensor | |
elif tensor_type == TensorType.PYTORCH: | |
if not is_torch_available(): | |
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") | |
import torch | |
as_tensor = torch.tensor | |
is_tensor = torch.is_tensor | |
elif tensor_type == TensorType.JAX: | |
if not is_flax_available(): | |
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") | |
import jax.numpy as jnp # noqa: F811 | |
as_tensor = jnp.array | |
is_tensor = _is_jax | |
else: | |
as_tensor = np.asarray | |
is_tensor = _is_numpy | |
# Do the tensor conversion in batch | |
for key, value in self.items(): | |
try: | |
if not is_tensor(value): | |
tensor = as_tensor(value) | |
self[key] = tensor | |
except: # noqa E722 | |
if key == "overflowing_values": | |
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") | |
raise ValueError( | |
"Unable to create tensor, you should probably activate padding " | |
"with 'padding=True' to have batched tensors with the same length." | |
) | |
return self | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.to with BatchEncoding->BatchFeature | |
def to(self, device: Union[str, "torch.device"]) -> "BatchFeature": | |
""" | |
Send all values to device by calling :obj:`v.to(device)` (PyTorch only). | |
Args: | |
device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on. | |
Returns: | |
:class:`~transformers.BatchFeature`: The same instance after modification. | |
""" | |
# This check catches things like APEX blindly calling "to" on all inputs to a module | |
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs | |
# into a HalfTensor | |
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): | |
self.data = {k: v.to(device=device) for k, v in self.data.items()} | |
else: | |
logger.warning(f"Attempting to cast a BatchFeature to type {str(device)}. This is not supported.") | |
return self | |
class FeatureExtractionMixin: | |
""" | |
This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature | |
extractors. | |
""" | |
def __init__(self, **kwargs): | |
"""Set elements of `kwargs` as attributes.""" | |
# Additional attributes without default values | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
def from_pretrained( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> PreTrainedFeatureExtractor: | |
r""" | |
Instantiate a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a feature | |
extractor, *e.g.* a derived class of :class:`~transformers.SequenceFeatureExtractor`. | |
Args: | |
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |
This can be either: | |
- a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or | |
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing a feature extractor file saved using the | |
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.save_pretrained` method, e.g., | |
``./my_model_directory/``. | |
- a path or url to a saved feature extractor JSON `file`, e.g., | |
``./my_model_directory/preprocessor_config.json``. | |
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the | |
standard cache should not be used. | |
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to force to (re-)download the feature extractor files and override the cached versions | |
if they exist. | |
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
exists. | |
proxies (:obj:`Dict[str, str]`, `optional`): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
use_auth_token (:obj:`str` or `bool`, `optional`): | |
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token | |
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). | |
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |
identifier allowed by git. | |
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If :obj:`False`, then this function returns just the final feature extractor object. If :obj:`True`, | |
then this functions returns a :obj:`Tuple(feature_extractor, unused_kwargs)` where `unused_kwargs` is a | |
dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the | |
part of ``kwargs`` which has not been used to update ``feature_extractor`` and is otherwise ignored. | |
kwargs (:obj:`Dict[str, Any]`, `optional`): | |
The values in kwargs of any keys which are feature extractor attributes will be used to override the | |
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is | |
controlled by the ``return_unused_kwargs`` keyword parameter. | |
.. note:: | |
Passing :obj:`use_auth_token=True` is required when you want to use a private model. | |
Returns: | |
A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`. | |
Examples:: | |
# We can't instantiate directly the base class `FeatureExtractionMixin` nor `SequenceFeatureExtractor` so let's show the examples on a | |
# derived class: `Wav2Vec2FeatureExtractor` | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') # Download feature_extraction_config from huggingface.co and cache. | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/') # E.g. feature_extractor (or model) was saved using `save_pretrained('./test/saved_model/')` | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/preprocessor_config.json') | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False) | |
assert feature_extractor.return_attention_mask is False | |
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, | |
foo=False, return_unused_kwargs=True) | |
assert feature_extractor.return_attention_mask is False | |
assert unused_kwargs == {'foo': False} | |
""" | |
feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) | |
return cls.from_dict(feature_extractor_dict, **kwargs) | |
def save_pretrained(self, save_directory: Union[str, os.PathLike]): | |
""" | |
Save a feature_extractor object to the directory ``save_directory``, so that it can be re-loaded using the | |
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.from_pretrained` class method. | |
Args: | |
save_directory (:obj:`str` or :obj:`os.PathLike`): | |
Directory where the feature extractor JSON file will be saved (will be created if it does not exist). | |
""" | |
if os.path.isfile(save_directory): | |
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) | |
self.to_json_file(output_feature_extractor_file) | |
logger.info(f"Configuration saved in {output_feature_extractor_file}") | |
def get_feature_extractor_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
""" | |
From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a | |
feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` using | |
``from_dict``. | |
Parameters: | |
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. | |
Returns: | |
:obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor | |
object. | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) | |
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
feature_extractor_file = pretrained_model_name_or_path | |
else: | |
feature_extractor_file = hf_bucket_url( | |
pretrained_model_name_or_path, filename=FEATURE_EXTRACTOR_NAME, revision=revision, mirror=None | |
) | |
try: | |
# Load from URL or cache if already cached | |
resolved_feature_extractor_file = cached_path( | |
feature_extractor_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
user_agent=user_agent, | |
) | |
# Load feature_extractor dict | |
with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
feature_extractor_dict = json.loads(text) | |
except EnvironmentError as err: | |
logger.error(err) | |
msg = ( | |
f"Can't load feature extractor for '{pretrained_model_name_or_path}'. Make sure that:\n\n" | |
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" | |
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {FEATURE_EXTRACTOR_NAME} file\n\n" | |
) | |
raise EnvironmentError(msg) | |
except json.JSONDecodeError: | |
msg = ( | |
f"Couldn't reach server at '{feature_extractor_file}' to download feature extractor configuration file or " | |
"feature extractor configuration file is not a valid JSON file. " | |
f"Please check network or file content here: {resolved_feature_extractor_file}." | |
) | |
raise EnvironmentError(msg) | |
if resolved_feature_extractor_file == feature_extractor_file: | |
logger.info(f"loading feature extractor configuration file {feature_extractor_file}") | |
else: | |
logger.info( | |
f"loading feature extractor configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" | |
) | |
return feature_extractor_dict, kwargs | |
def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: | |
""" | |
Instantiates a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a Python | |
dictionary of parameters. | |
Args: | |
feature_extractor_dict (:obj:`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be | |
retrieved from a pretrained checkpoint by leveraging the | |
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.to_dict` method. | |
kwargs (:obj:`Dict[str, Any]`): | |
Additional parameters from which to initialize the feature extractor object. | |
Returns: | |
:class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature extractor object | |
instantiated from those parameters. | |
""" | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
feature_extractor = cls(**feature_extractor_dict) | |
# Update feature_extractor with kwargs if needed | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(feature_extractor, key): | |
setattr(feature_extractor, key, value) | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
logger.info(f"Feature extractor {feature_extractor}") | |
if return_unused_kwargs: | |
return feature_extractor, kwargs | |
else: | |
return feature_extractor | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. | |
Returns: | |
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output["feature_extractor_type"] = self.__class__.__name__ | |
return output | |
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: | |
""" | |
Instantiates a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` | |
from the path to a JSON file of parameters. | |
Args: | |
json_file (:obj:`str` or :obj:`os.PathLike`): | |
Path to the JSON file containing the parameters. | |
Returns: | |
A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The | |
feature_extractor object instantiated from that JSON file. | |
""" | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
feature_extractor_dict = json.loads(text) | |
return cls(**feature_extractor_dict) | |
def to_json_string(self) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Returns: | |
:obj:`str`: String containing all the attributes that make up this feature_extractor instance in JSON | |
format. | |
""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (:obj:`str` or :obj:`os.PathLike`): | |
Path to the JSON file in which this feature_extractor instance's parameters will be saved. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string()) | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |