File size: 21,973 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 Feature extraction saving/loading class for common feature extractors.
"""

import copy
import json
import os
from collections import UserDict
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union

import numpy as np

from .file_utils import (
    FEATURE_EXTRACTOR_NAME,
    TensorType,
    _is_jax,
    _is_numpy,
    _is_torch_device,
    cached_path,
    hf_bucket_url,
    is_flax_available,
    is_offline_mode,
    is_remote_url,
    is_tf_available,
    is_torch_available,
    torch_required,
)
from .utils import logging


if TYPE_CHECKING:
    if is_torch_available():
        import torch


logger = logging.get_logger(__name__)

PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"]  # noqa: F821


class BatchFeature(UserDict):
    r"""
    Holds the output of the :meth:`~transformers.SequenceFeatureExtractor.pad` and feature extractor specific
    ``__call__`` methods.

    This class is derived from a python dictionary and can be used as a dictionary.

    Args:
        data (:obj:`dict`):
            Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask',
            etc.).
        tensor_type (:obj:`Union[None, str, TensorType]`, `optional`):
            You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
            initialization.
    """

    def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
        super().__init__(data)
        self.convert_to_tensors(tensor_type=tensor_type)

    def __getitem__(self, item: str) -> Union[Any]:
        """
        If the key is a string, returns the value of the dict associated to :obj:`key` ('input_values',
        'attention_mask', etc.).
        """
        if isinstance(item, str):
            return self.data[item]
        else:
            raise KeyError("Indexing with integers is not available when using Python based feature extractors")

    def __getattr__(self, item: str):
        try:
            return self.data[item]
        except KeyError:
            raise AttributeError

    def __getstate__(self):
        return {"data": self.data}

    def __setstate__(self, state):
        if "data" in state:
            self.data = state["data"]

    # Copied from transformers.tokenization_utils_base.BatchEncoding.keys
    def keys(self):
        return self.data.keys()

    # Copied from transformers.tokenization_utils_base.BatchEncoding.values
    def values(self):
        return self.data.values()

    # Copied from transformers.tokenization_utils_base.BatchEncoding.items
    def items(self):
        return self.data.items()

    def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
        """
        Convert the inner content to tensors.

        Args:
            tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
                The type of tensors to use. If :obj:`str`, should be one of the values of the enum
                :class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done.
        """
        if tensor_type is None:
            return self

        # Convert to TensorType
        if not isinstance(tensor_type, TensorType):
            tensor_type = TensorType(tensor_type)

        # Get a function reference for the correct framework
        if tensor_type == TensorType.TENSORFLOW:
            if not is_tf_available():
                raise ImportError(
                    "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
                )
            import tensorflow as tf

            as_tensor = tf.constant
            is_tensor = tf.is_tensor
        elif tensor_type == TensorType.PYTORCH:
            if not is_torch_available():
                raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
            import torch

            as_tensor = torch.tensor
            is_tensor = torch.is_tensor
        elif tensor_type == TensorType.JAX:
            if not is_flax_available():
                raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
            import jax.numpy as jnp  # noqa: F811

            as_tensor = jnp.array
            is_tensor = _is_jax
        else:
            as_tensor = np.asarray
            is_tensor = _is_numpy

        # Do the tensor conversion in batch
        for key, value in self.items():
            try:
                if not is_tensor(value):
                    tensor = as_tensor(value)

                    self[key] = tensor
            except:  # noqa E722
                if key == "overflowing_values":
                    raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
                raise ValueError(
                    "Unable to create tensor, you should probably activate padding "
                    "with 'padding=True' to have batched tensors with the same length."
                )

        return self

    @torch_required
    # Copied from transformers.tokenization_utils_base.BatchEncoding.to with BatchEncoding->BatchFeature
    def to(self, device: Union[str, "torch.device"]) -> "BatchFeature":
        """
        Send all values to device by calling :obj:`v.to(device)` (PyTorch only).

        Args:
            device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on.

        Returns:
            :class:`~transformers.BatchFeature`: The same instance after modification.
        """

        # This check catches things like APEX blindly calling "to" on all inputs to a module
        # Otherwise it passes the casts down and casts the LongTensor containing the token idxs
        # into a HalfTensor
        if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
            self.data = {k: v.to(device=device) for k, v in self.data.items()}
        else:
            logger.warning(f"Attempting to cast a BatchFeature to type {str(device)}. This is not supported.")
        return self


class FeatureExtractionMixin:
    """
    This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature
    extractors.
    """

    def __init__(self, **kwargs):
        """Set elements of `kwargs` as attributes."""
        # Additional attributes without default values
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err

    @classmethod
    def from_pretrained(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> PreTrainedFeatureExtractor:
        r"""
        Instantiate a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a feature
        extractor, *e.g.* a derived class of :class:`~transformers.SequenceFeatureExtractor`.

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                This can be either:

                - a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
                  namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
                - a path to a `directory` containing a feature extractor file saved using the
                  :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.save_pretrained` method, e.g.,
                  ``./my_model_directory/``.
                - a path or url to a saved feature extractor JSON `file`, e.g.,
                  ``./my_model_directory/preprocessor_config.json``.
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
                Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
                standard cache should not be used.
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force to (re-)download the feature extractor files and override the cached versions
                if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received file. Attempts to resume the download if such a file
                exists.
            proxies (:obj:`Dict[str, str]`, `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
                If :obj:`False`, then this function returns just the final feature extractor object. If :obj:`True`,
                then this functions returns a :obj:`Tuple(feature_extractor, unused_kwargs)` where `unused_kwargs` is a
                dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the
                part of ``kwargs`` which has not been used to update ``feature_extractor`` and is otherwise ignored.
            kwargs (:obj:`Dict[str, Any]`, `optional`):
                The values in kwargs of any keys which are feature extractor attributes will be used to override the
                loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
                controlled by the ``return_unused_kwargs`` keyword parameter.

        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.


        Returns:
            A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`.

        Examples::

            # We can't instantiate directly the base class `FeatureExtractionMixin` nor `SequenceFeatureExtractor` so let's show the examples on a
            # derived class: `Wav2Vec2FeatureExtractor`
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h')    # Download feature_extraction_config from huggingface.co and cache.
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/')  # E.g. feature_extractor (or model) was saved using `save_pretrained('./test/saved_model/')`
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/preprocessor_config.json')
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False)
            assert feature_extractor.return_attention_mask is False
            feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False,
                                                               foo=False, return_unused_kwargs=True)
            assert feature_extractor.return_attention_mask is False
            assert unused_kwargs == {'foo': False}
        """
        feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)

        return cls.from_dict(feature_extractor_dict, **kwargs)

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        """
        Save a feature_extractor object to the directory ``save_directory``, so that it can be re-loaded using the
        :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.from_pretrained` class method.

        Args:
            save_directory (:obj:`str` or :obj:`os.PathLike`):
                Directory where the feature extractor JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
        os.makedirs(save_directory, exist_ok=True)
        # If we save using the predefined names, we can load using `from_pretrained`
        output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME)

        self.to_json_file(output_feature_extractor_file)
        logger.info(f"Configuration saved in {output_feature_extractor_file}")

    @classmethod
    def get_feature_extractor_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """
        From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a
        feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` using
        ``from_dict``.

        Parameters:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.

        Returns:
            :obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor
            object.
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        if os.path.isdir(pretrained_model_name_or_path):
            feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME)
        elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            feature_extractor_file = pretrained_model_name_or_path
        else:
            feature_extractor_file = hf_bucket_url(
                pretrained_model_name_or_path, filename=FEATURE_EXTRACTOR_NAME, revision=revision, mirror=None
            )

        try:
            # Load from URL or cache if already cached
            resolved_feature_extractor_file = cached_path(
                feature_extractor_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )
            # Load feature_extractor dict
            with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            feature_extractor_dict = json.loads(text)

        except EnvironmentError as err:
            logger.error(err)
            msg = (
                f"Can't load feature extractor for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {FEATURE_EXTRACTOR_NAME} file\n\n"
            )
            raise EnvironmentError(msg)

        except json.JSONDecodeError:
            msg = (
                f"Couldn't reach server at '{feature_extractor_file}' to download feature extractor configuration file or "
                "feature extractor configuration file is not a valid JSON file. "
                f"Please check network or file content here: {resolved_feature_extractor_file}."
            )
            raise EnvironmentError(msg)

        if resolved_feature_extractor_file == feature_extractor_file:
            logger.info(f"loading feature extractor configuration file {feature_extractor_file}")
        else:
            logger.info(
                f"loading feature extractor configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
            )

        return feature_extractor_dict, kwargs

    @classmethod
    def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor:
        """
        Instantiates a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a Python
        dictionary of parameters.

        Args:
            feature_extractor_dict (:obj:`Dict[str, Any]`):
                Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the
                :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.to_dict` method.
            kwargs (:obj:`Dict[str, Any]`):
                Additional parameters from which to initialize the feature extractor object.

        Returns:
            :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature extractor object
            instantiated from those parameters.
        """
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)

        feature_extractor = cls(**feature_extractor_dict)

        # Update feature_extractor with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(feature_extractor, key):
                setattr(feature_extractor, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info(f"Feature extractor {feature_extractor}")
        if return_unused_kwargs:
            return feature_extractor, kwargs
        else:
            return feature_extractor

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            :obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance.
        """
        output = copy.deepcopy(self.__dict__)
        output["feature_extractor_type"] = self.__class__.__name__

        return output

    @classmethod
    def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor:
        """
        Instantiates a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`
        from the path to a JSON file of parameters.

        Args:
            json_file (:obj:`str` or :obj:`os.PathLike`):
                Path to the JSON file containing the parameters.

        Returns:
            A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The
            feature_extractor object instantiated from that JSON file.
        """
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        feature_extractor_dict = json.loads(text)
        return cls(**feature_extractor_dict)

    def to_json_string(self) -> str:
        """
        Serializes this instance to a JSON string.

        Returns:
            :obj:`str`: String containing all the attributes that make up this feature_extractor instance in JSON
            format.
        """
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (:obj:`str` or :obj:`os.PathLike`):
                Path to the JSON file in which this feature_extractor instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string())

    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"