Spaces:
Sleeping
Sleeping
File size: 21,973 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extraction saving/loading class for common feature extractors.
"""
import copy
import json
import os
from collections import UserDict
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
import numpy as np
from .file_utils import (
FEATURE_EXTRACTOR_NAME,
TensorType,
_is_jax,
_is_numpy,
_is_torch_device,
cached_path,
hf_bucket_url,
is_flax_available,
is_offline_mode,
is_remote_url,
is_tf_available,
is_torch_available,
torch_required,
)
from .utils import logging
if TYPE_CHECKING:
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821
class BatchFeature(UserDict):
r"""
Holds the output of the :meth:`~transformers.SequenceFeatureExtractor.pad` and feature extractor specific
``__call__`` methods.
This class is derived from a python dictionary and can be used as a dictionary.
Args:
data (:obj:`dict`):
Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask',
etc.).
tensor_type (:obj:`Union[None, str, TensorType]`, `optional`):
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
initialization.
"""
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
super().__init__(data)
self.convert_to_tensors(tensor_type=tensor_type)
def __getitem__(self, item: str) -> Union[Any]:
"""
If the key is a string, returns the value of the dict associated to :obj:`key` ('input_values',
'attention_mask', etc.).
"""
if isinstance(item, str):
return self.data[item]
else:
raise KeyError("Indexing with integers is not available when using Python based feature extractors")
def __getattr__(self, item: str):
try:
return self.data[item]
except KeyError:
raise AttributeError
def __getstate__(self):
return {"data": self.data}
def __setstate__(self, state):
if "data" in state:
self.data = state["data"]
# Copied from transformers.tokenization_utils_base.BatchEncoding.keys
def keys(self):
return self.data.keys()
# Copied from transformers.tokenization_utils_base.BatchEncoding.values
def values(self):
return self.data.values()
# Copied from transformers.tokenization_utils_base.BatchEncoding.items
def items(self):
return self.data.items()
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
"""
Convert the inner content to tensors.
Args:
tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
The type of tensors to use. If :obj:`str`, should be one of the values of the enum
:class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done.
"""
if tensor_type is None:
return self
# Convert to TensorType
if not isinstance(tensor_type, TensorType):
tensor_type = TensorType(tensor_type)
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
)
import tensorflow as tf
as_tensor = tf.constant
is_tensor = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
import torch
as_tensor = torch.tensor
is_tensor = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
import jax.numpy as jnp # noqa: F811
as_tensor = jnp.array
is_tensor = _is_jax
else:
as_tensor = np.asarray
is_tensor = _is_numpy
# Do the tensor conversion in batch
for key, value in self.items():
try:
if not is_tensor(value):
tensor = as_tensor(value)
self[key] = tensor
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
return self
@torch_required
# Copied from transformers.tokenization_utils_base.BatchEncoding.to with BatchEncoding->BatchFeature
def to(self, device: Union[str, "torch.device"]) -> "BatchFeature":
"""
Send all values to device by calling :obj:`v.to(device)` (PyTorch only).
Args:
device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on.
Returns:
:class:`~transformers.BatchFeature`: The same instance after modification.
"""
# This check catches things like APEX blindly calling "to" on all inputs to a module
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
# into a HalfTensor
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
self.data = {k: v.to(device=device) for k, v in self.data.items()}
else:
logger.warning(f"Attempting to cast a BatchFeature to type {str(device)}. This is not supported.")
return self
class FeatureExtractionMixin:
"""
This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature
extractors.
"""
def __init__(self, **kwargs):
"""Set elements of `kwargs` as attributes."""
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> PreTrainedFeatureExtractor:
r"""
Instantiate a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a feature
extractor, *e.g.* a derived class of :class:`~transformers.SequenceFeatureExtractor`.
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
This can be either:
- a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a feature extractor file saved using the
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.save_pretrained` method, e.g.,
``./my_model_directory/``.
- a path or url to a saved feature extractor JSON `file`, e.g.,
``./my_model_directory/preprocessor_config.json``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force to (re-)download the feature extractor files and override the cached versions
if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (:obj:`str` or `bool`, `optional`):
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`False`, then this function returns just the final feature extractor object. If :obj:`True`,
then this functions returns a :obj:`Tuple(feature_extractor, unused_kwargs)` where `unused_kwargs` is a
dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the
part of ``kwargs`` which has not been used to update ``feature_extractor`` and is otherwise ignored.
kwargs (:obj:`Dict[str, Any]`, `optional`):
The values in kwargs of any keys which are feature extractor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
controlled by the ``return_unused_kwargs`` keyword parameter.
.. note::
Passing :obj:`use_auth_token=True` is required when you want to use a private model.
Returns:
A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`.
Examples::
# We can't instantiate directly the base class `FeatureExtractionMixin` nor `SequenceFeatureExtractor` so let's show the examples on a
# derived class: `Wav2Vec2FeatureExtractor`
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') # Download feature_extraction_config from huggingface.co and cache.
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/') # E.g. feature_extractor (or model) was saved using `save_pretrained('./test/saved_model/')`
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/preprocessor_config.json')
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False)
assert feature_extractor.return_attention_mask is False
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False,
foo=False, return_unused_kwargs=True)
assert feature_extractor.return_attention_mask is False
assert unused_kwargs == {'foo': False}
"""
feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_dict(feature_extractor_dict, **kwargs)
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
"""
Save a feature_extractor object to the directory ``save_directory``, so that it can be re-loaded using the
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.from_pretrained` class method.
Args:
save_directory (:obj:`str` or :obj:`os.PathLike`):
Directory where the feature extractor JSON file will be saved (will be created if it does not exist).
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_pretrained`
output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME)
self.to_json_file(output_feature_extractor_file)
logger.info(f"Configuration saved in {output_feature_extractor_file}")
@classmethod
def get_feature_extractor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a
feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` using
``from_dict``.
Parameters:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
:obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor
object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
feature_extractor_file = pretrained_model_name_or_path
else:
feature_extractor_file = hf_bucket_url(
pretrained_model_name_or_path, filename=FEATURE_EXTRACTOR_NAME, revision=revision, mirror=None
)
try:
# Load from URL or cache if already cached
resolved_feature_extractor_file = cached_path(
feature_extractor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
# Load feature_extractor dict
with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader:
text = reader.read()
feature_extractor_dict = json.loads(text)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load feature extractor for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {FEATURE_EXTRACTOR_NAME} file\n\n"
)
raise EnvironmentError(msg)
except json.JSONDecodeError:
msg = (
f"Couldn't reach server at '{feature_extractor_file}' to download feature extractor configuration file or "
"feature extractor configuration file is not a valid JSON file. "
f"Please check network or file content here: {resolved_feature_extractor_file}."
)
raise EnvironmentError(msg)
if resolved_feature_extractor_file == feature_extractor_file:
logger.info(f"loading feature extractor configuration file {feature_extractor_file}")
else:
logger.info(
f"loading feature extractor configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
)
return feature_extractor_dict, kwargs
@classmethod
def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor:
"""
Instantiates a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a Python
dictionary of parameters.
Args:
feature_extractor_dict (:obj:`Dict[str, Any]`):
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
:func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.to_dict` method.
kwargs (:obj:`Dict[str, Any]`):
Additional parameters from which to initialize the feature extractor object.
Returns:
:class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature extractor object
instantiated from those parameters.
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
feature_extractor = cls(**feature_extractor_dict)
# Update feature_extractor with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(feature_extractor, key):
setattr(feature_extractor, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f"Feature extractor {feature_extractor}")
if return_unused_kwargs:
return feature_extractor, kwargs
else:
return feature_extractor
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
return output
@classmethod
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor:
"""
Instantiates a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`
from the path to a JSON file of parameters.
Args:
json_file (:obj:`str` or :obj:`os.PathLike`):
Path to the JSON file containing the parameters.
Returns:
A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The
feature_extractor object instantiated from that JSON file.
"""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
feature_extractor_dict = json.loads(text)
return cls(**feature_extractor_dict)
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
:obj:`str`: String containing all the attributes that make up this feature_extractor instance in JSON
format.
"""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (:obj:`str` or :obj:`os.PathLike`):
Path to the JSON file in which this feature_extractor instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
|