Spaces:
Sleeping
Sleeping
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Integration with Deepspeed | |
| """ | |
| import importlib.util | |
| import io | |
| import json | |
| import weakref | |
| from copy import deepcopy | |
| from functools import partialmethod | |
| # from .dependency_versions_check import dep_version_check | |
| from .file_utils import is_torch_available | |
| from .utils import logging | |
| if is_torch_available(): | |
| import torch | |
| logger = logging.get_logger(__name__) | |
| def is_deepspeed_available(): | |
| return importlib.util.find_spec("deepspeed") is not None | |
| class HfDeepSpeedConfig: | |
| """ | |
| This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage. | |
| A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where | |
| things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``). | |
| Therefore it's important that this object remains alive while the program is still running. | |
| :class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to | |
| sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder | |
| values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way. | |
| Args: | |
| config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict. | |
| """ | |
| def __init__(self, config_file_or_dict): | |
| # set global weakref object | |
| set_hf_deepspeed_config(self) | |
| dep_version_check("deepspeed") | |
| if isinstance(config_file_or_dict, dict): | |
| # Don't modify user's data should they want to reuse it (e.g. in tests), because once we | |
| # modified it, it will not be accepted here again, since `auto` values would have been overriden | |
| config = deepcopy(config_file_or_dict) | |
| elif isinstance(config_file_or_dict, str): | |
| with io.open(config_file_or_dict, "r", encoding="utf-8") as f: | |
| config = json.load(f) | |
| else: | |
| raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict") | |
| self.config = config | |
| # zero stage - this is done as early as possible, before model is created, to allow | |
| # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object | |
| # during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc. | |
| self._stage = self.get_value("zero_optimization.stage", -1) | |
| # offload | |
| self._offload = False | |
| if self.is_zero2() or self.is_zero3(): | |
| offload_devices_valid = set(["cpu", "nvme"]) | |
| offload_devices = set( | |
| [ | |
| self.get_value("zero_optimization.offload_optimizer.device"), | |
| self.get_value("zero_optimization.offload_param.device"), | |
| ] | |
| ) | |
| if len(offload_devices & offload_devices_valid) > 0: | |
| self._offload = True | |
| def find_config_node(self, ds_key_long): | |
| config = self.config | |
| # find the config node of interest if it exists | |
| nodes = ds_key_long.split(".") | |
| ds_key = nodes.pop() | |
| for node in nodes: | |
| config = config.get(node) | |
| if config is None: | |
| return None, ds_key | |
| return config, ds_key | |
| def get_value(self, ds_key_long, default=None): | |
| """ | |
| Returns the set value or ``default`` if no value is set | |
| """ | |
| config, ds_key = self.find_config_node(ds_key_long) | |
| if config is None: | |
| return default | |
| return config.get(ds_key, default) | |
| def is_true(self, ds_key_long): | |
| """ | |
| Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to | |
| ask the very specific question of whether the value is set to :obj:`True` (and it's not set to :obj:`False` or | |
| isn't set). | |
| """ | |
| value = self.get_value(ds_key_long) | |
| return False if value is None else bool(value) | |
| def is_false(self, ds_key_long): | |
| """ | |
| Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to | |
| ask the very specific question of whether the value is set to :obj:`False` (and it's not set to :obj:`True` or | |
| isn't set). | |
| """ | |
| value = self.get_value(ds_key_long) | |
| return False if value is None else not bool(value) | |
| def is_zero2(self): | |
| return self._stage == 2 | |
| def is_zero3(self): | |
| return self._stage == 3 | |
| def is_offload(self): | |
| return self._offload | |
| class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig): | |
| """ | |
| The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has | |
| the same lifespan as the latter. | |
| """ | |
| def __init__(self, config_file_or_dict): | |
| super().__init__(config_file_or_dict) | |
| self._dtype = torch.float16 | |
| self.mismatches = [] | |
| def dtype(self): | |
| return self._dtype | |
| def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True): | |
| """ | |
| A utility method that massages the config file and can optionally verify that the values match. | |
| 1. Replace "auto" values with ``TrainingArguments`` value. | |
| 2. If it wasn't "auto" and ``must_match`` is true, then check that DS config matches Trainer | |
| config values and if mismatched add the entry to ``self.mismatched`` - will assert during | |
| ``trainer_config_finalize`` for one or more mismatches. | |
| """ | |
| config, ds_key = self.find_config_node(ds_key_long) | |
| if config is None: | |
| return | |
| if config.get(ds_key) == "auto": | |
| config[ds_key] = hf_val | |
| return | |
| if not must_match: | |
| return | |
| ds_val = config.get(ds_key) | |
| if ds_val is not None and ds_val != hf_val: | |
| self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}") | |
| fill_only = partialmethod(fill_match, must_match=False) | |
| def trainer_config_process(self, args): | |
| """ | |
| Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object | |
| creation. | |
| """ | |
| # DeepSpeed does: | |
| # train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps | |
| train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps | |
| self.fill_match( | |
| "train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size" | |
| ) | |
| self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps") | |
| self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)") | |
| self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm") | |
| self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate") | |
| self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2") | |
| self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon") | |
| self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay") | |
| self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg | |
| self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate") | |
| # total_num_steps - will get set in trainer_config_finalize | |
| # fp16 | |
| if args.fp16: | |
| fp16_backend = "apex" if args.fp16_backend == "apex" else "amp" | |
| else: | |
| fp16_backend = None | |
| # amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set | |
| # any here unless the user did the work | |
| self.fill_match("fp16.enabled", fp16_backend == "amp", "fp16+fp16_backend(amp)") | |
| # apex: delegates amp work to apex (which needs to be available), but it cannot be used with any | |
| # ZeRO features | |
| self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)") | |
| self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level") | |
| # only if we have an explicit fp16.enabled = False then it's fp32, if it's True or this | |
| # whole config section is missing then the fallback is fp16 | |
| if self.is_false("fp16.enabled"): | |
| self._dtype = torch.float32 | |
| # later there will be other dtypes besides just fp16 and fp32 | |
| # also not quite sure what dtype should be under apex, defaulting to fp16 for now | |
| def trainer_config_finalize(self, args, model, num_training_steps): | |
| """ | |
| This stage is run after we have the model and know num_training_steps. | |
| Now we we can complete the configuration process. | |
| """ | |
| # zero | |
| if self.is_zero3(): | |
| # automatically assign the optimal config values based on model config | |
| hidden_size = model.config.hidden_size | |
| self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size) | |
| self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size) | |
| self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size) | |
| # scheduler | |
| self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)") | |
| self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps") | |
| if len(self.mismatches) > 0: | |
| mismatches = "\n".join(self.mismatches) | |
| raise ValueError( | |
| f"Please correct the following DeepSpeed config values that mismatch TrainingArguments values:\n{mismatches}\n" | |
| "The easiest method is to set these DeepSpeed config values to 'auto'." | |
| ) | |
| # keep the config object global to be able to access it anywhere during TrainingArguments life-cycle | |
| _hf_deepspeed_config_weak_ref = None | |
| def set_hf_deepspeed_config(hf_deepspeed_config_obj): | |
| # this is a special weakref global object to allow us to get to Deepspeed config from APIs | |
| # that don't have an easy way to get to the Deepspeed config outside of the Trainer domain. | |
| global _hf_deepspeed_config_weak_ref | |
| # will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed) | |
| _hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj) | |
| def is_deepspeed_zero3_enabled(): | |
| if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None: | |
| return _hf_deepspeed_config_weak_ref().is_zero3() | |
| else: | |
| return False | |
| def deepspeed_config(): | |
| if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None: | |
| return _hf_deepspeed_config_weak_ref().config | |
| else: | |
| return None | |
| def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None): | |
| """ | |
| Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args. | |
| If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made. | |
| Args: | |
| trainer: Trainer object | |
| num_training_steps: per single gpu | |
| resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load | |
| Returns: model, optimizer, lr_scheduler | |
| """ | |
| import deepspeed | |
| from deepspeed.utils import logger as ds_logger | |
| model = trainer.model | |
| args = trainer.args | |
| hf_deepspeed_config = args.hf_deepspeed_config | |
| hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps) | |
| # resume config update - some bits like `model` and `num_training_steps` only become available during train | |
| config = hf_deepspeed_config.config | |
| # Optimizer + Scheduler | |
| # Currently supported combos: | |
| # 1. DS scheduler + DS optimizer: Yes | |
| # 2. HF scheduler + HF optimizer: Yes | |
| # 3. DS scheduler + HF optimizer: Yes | |
| # 4. HF scheduler + DS optimizer: No | |
| # | |
| # Unless Offload is enabled in which case it's: | |
| # 1. DS scheduler + DS optimizer: Yes | |
| # 2. HF scheduler + HF optimizer: Mostly* | |
| # 3. DS scheduler + HF optimizer: Mostly* | |
| # 4. HF scheduler + DS optimizer: No | |
| # | |
| # Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB) | |
| optimizer = None | |
| if "optimizer" in config: | |
| if args.adafactor: | |
| raise ValueError( | |
| "--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. " | |
| "Only one optimizer can be configured." | |
| ) | |
| else: | |
| if hf_deepspeed_config.is_offload(): | |
| logger.info( | |
| "Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the custom optimizer has both CPU and GPU implementation (except LAMB)" | |
| ) | |
| # ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch. | |
| # But trainer uses AdamW by default. | |
| trainer.create_optimizer() | |
| optimizer = trainer.optimizer | |
| # To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer` | |
| config["zero_allow_untested_optimizer"] = True | |
| # DS schedulers (deepspeed/runtime/lr_schedules.py): | |
| # | |
| # DS name | --lr_scheduler_type | HF func | Notes | |
| # -------------| ---------------------|-----------------------------------|-------------------- | |
| # LRRangeTest | na | na | LRRT | |
| # OneCycle | na | na | 1CLR | |
| # WarmupLR | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0 | |
| # WarmupDecayLR| linear | get_linear_schedule_with_warmup | | |
| lr_scheduler = None | |
| if "scheduler" not in config: | |
| if "optimizer" in config: | |
| # to make this option work, we need to init DS optimizer first, then init HS scheduler, | |
| # then pass the HS scheduler to DS init, which is not possible at the moment | |
| raise ValueError("At the moment HF scheduler + DeepSpeed optimizer combination is not possible") | |
| else: | |
| trainer.create_scheduler(num_training_steps=num_training_steps) | |
| lr_scheduler = trainer.lr_scheduler | |
| # keep for quick debug: | |
| # from pprint import pprint; pprint(config) | |
| # set the Deepspeed log level consistent with the trainer | |
| ds_logger.setLevel(args.get_process_log_level()) | |
| model_parameters = filter(lambda p: p.requires_grad, model.parameters()) | |
| model, optimizer, _, lr_scheduler = deepspeed.initialize( | |
| model=model, | |
| model_parameters=model_parameters, | |
| config_params=config, | |
| optimizer=optimizer, | |
| lr_scheduler=lr_scheduler, | |
| ) | |
| if resume_from_checkpoint is not None: | |
| # it's possible that the user is trying to resume from model_path, which doesn't necessarily | |
| # contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's | |
| # a resume from a checkpoint and not just a local pretrained weight. So we check here if the | |
| # path contains what looks like a deepspeed checkpoint | |
| import glob | |
| deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*")) | |
| if len(deepspeed_checkpoint_dirs) > 0: | |
| logger.info(f"Attempting to resume from {resume_from_checkpoint}") | |
| # this magically updates self.optimizer and self.lr_scheduler | |
| load_path, _ = model.load_checkpoint( | |
| resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True | |
| ) | |
| if load_path is None: | |
| raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}") | |
| else: | |
| logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing") | |
| return model, optimizer, lr_scheduler | |