File size: 17,436 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

Integration with Deepspeed

"""

import importlib.util
import io
import json
import weakref
from copy import deepcopy
from functools import partialmethod

# from .dependency_versions_check import dep_version_check
from .file_utils import is_torch_available
from .utils import logging


if is_torch_available():
    import torch

logger = logging.get_logger(__name__)


def is_deepspeed_available():
    return importlib.util.find_spec("deepspeed") is not None


class HfDeepSpeedConfig:
    """

    This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.



    A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where

    things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``).

    Therefore it's important that this object remains alive while the program is still running.



    :class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to

    sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder

    values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.



    Args:

        config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict.



    """

    def __init__(self, config_file_or_dict):
        # set global weakref object
        set_hf_deepspeed_config(self)

        dep_version_check("deepspeed")

        if isinstance(config_file_or_dict, dict):
            # Don't modify user's data should they want to reuse it (e.g. in tests), because once we
            # modified it, it will not be accepted here again, since `auto` values would have been overriden
            config = deepcopy(config_file_or_dict)
        elif isinstance(config_file_or_dict, str):
            with io.open(config_file_or_dict, "r", encoding="utf-8") as f:
                config = json.load(f)
        else:
            raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict")
        self.config = config

        # zero stage - this is done as early as possible, before model is created, to allow
        # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
        # during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc.
        self._stage = self.get_value("zero_optimization.stage", -1)

        # offload
        self._offload = False
        if self.is_zero2() or self.is_zero3():
            offload_devices_valid = set(["cpu", "nvme"])
            offload_devices = set(
                [
                    self.get_value("zero_optimization.offload_optimizer.device"),
                    self.get_value("zero_optimization.offload_param.device"),
                ]
            )
            if len(offload_devices & offload_devices_valid) > 0:
                self._offload = True

    def find_config_node(self, ds_key_long):
        config = self.config

        # find the config node of interest if it exists
        nodes = ds_key_long.split(".")
        ds_key = nodes.pop()
        for node in nodes:
            config = config.get(node)
            if config is None:
                return None, ds_key

        return config, ds_key

    def get_value(self, ds_key_long, default=None):
        """

        Returns the set value or ``default`` if no value is set

        """
        config, ds_key = self.find_config_node(ds_key_long)
        if config is None:
            return default
        return config.get(ds_key, default)

    def is_true(self, ds_key_long):
        """

        Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to

        ask the very specific question of whether the value is set to :obj:`True` (and it's not set to :obj:`False` or

        isn't set).



        """
        value = self.get_value(ds_key_long)
        return False if value is None else bool(value)

    def is_false(self, ds_key_long):
        """

        Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to

        ask the very specific question of whether the value is set to :obj:`False` (and it's not set to :obj:`True` or

        isn't set).

        """
        value = self.get_value(ds_key_long)
        return False if value is None else not bool(value)

    def is_zero2(self):
        return self._stage == 2

    def is_zero3(self):
        return self._stage == 3

    def is_offload(self):
        return self._offload


class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
    """

    The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has

    the same lifespan as the latter.

    """

    def __init__(self, config_file_or_dict):
        super().__init__(config_file_or_dict)
        self._dtype = torch.float16
        self.mismatches = []

    def dtype(self):
        return self._dtype

    def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
        """

        A utility method that massages the config file and can optionally verify that the values match.



        1. Replace "auto" values with ``TrainingArguments`` value.



        2. If it wasn't "auto" and ``must_match`` is true, then check that DS config matches Trainer

        config values and if mismatched add the entry to ``self.mismatched`` - will assert during

        ``trainer_config_finalize`` for one or more mismatches.



        """
        config, ds_key = self.find_config_node(ds_key_long)
        if config is None:
            return

        if config.get(ds_key) == "auto":
            config[ds_key] = hf_val
            return

        if not must_match:
            return

        ds_val = config.get(ds_key)
        if ds_val is not None and ds_val != hf_val:
            self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")

    fill_only = partialmethod(fill_match, must_match=False)

    def trainer_config_process(self, args):
        """

        Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object

        creation.

        """
        # DeepSpeed does:
        # train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
        train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
        self.fill_match(
            "train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size"
        )
        self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps")
        self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)")
        self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")

        self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
        self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2")
        self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
        self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")

        self.fill_only("scheduler.params.warmup_min_lr", 0)  # not a trainer arg
        self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
        # total_num_steps - will get set in trainer_config_finalize

        # fp16
        if args.fp16:
            fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
        else:
            fp16_backend = None

        # amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
        # any here unless the user did the work
        self.fill_match("fp16.enabled", fp16_backend == "amp", "fp16+fp16_backend(amp)")

        # apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
        # ZeRO features
        self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
        self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")

        # only if we have an explicit fp16.enabled = False then it's fp32, if it's True or this
        # whole config section is missing then the fallback is fp16
        if self.is_false("fp16.enabled"):
            self._dtype = torch.float32
        # later there will be other dtypes besides just fp16 and fp32
        # also not quite sure what dtype should be under apex, defaulting to fp16 for now

    def trainer_config_finalize(self, args, model, num_training_steps):
        """

        This stage is run after we have the model and know num_training_steps.



        Now we we can complete the configuration process.

        """
        # zero
        if self.is_zero3():
            # automatically assign the optimal config values based on model config
            hidden_size = model.config.hidden_size
            self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
            self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
            self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)

        # scheduler
        self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)")
        self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps")

        if len(self.mismatches) > 0:
            mismatches = "\n".join(self.mismatches)
            raise ValueError(
                f"Please correct the following DeepSpeed config values that mismatch TrainingArguments values:\n{mismatches}\n"
                "The easiest method is to set these DeepSpeed config values to 'auto'."
            )


# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None


def set_hf_deepspeed_config(hf_deepspeed_config_obj):
    # this is a special weakref global object to allow us to get to Deepspeed config from APIs
    # that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
    global _hf_deepspeed_config_weak_ref
    # will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
    _hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)


def is_deepspeed_zero3_enabled():
    if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
        return _hf_deepspeed_config_weak_ref().is_zero3()
    else:
        return False


def deepspeed_config():
    if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
        return _hf_deepspeed_config_weak_ref().config
    else:
        return None


def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
    """

    Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.



    If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made.



    Args:

        trainer: Trainer object

        num_training_steps: per single gpu

        resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load



    Returns: model, optimizer, lr_scheduler



    """
    import deepspeed
    from deepspeed.utils import logger as ds_logger

    model = trainer.model
    args = trainer.args

    hf_deepspeed_config = args.hf_deepspeed_config
    hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)

    # resume config update - some bits like `model` and `num_training_steps` only become available during train
    config = hf_deepspeed_config.config

    # Optimizer + Scheduler
    # Currently supported combos:
    # 1. DS scheduler + DS optimizer: Yes
    # 2. HF scheduler + HF optimizer: Yes
    # 3. DS scheduler + HF optimizer: Yes
    # 4. HF scheduler + DS optimizer: No
    #
    # Unless Offload is enabled in which case it's:
    # 1. DS scheduler + DS optimizer: Yes
    # 2. HF scheduler + HF optimizer: Mostly*
    # 3. DS scheduler + HF optimizer: Mostly*
    # 4. HF scheduler + DS optimizer: No
    #
    # Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)

    optimizer = None
    if "optimizer" in config:
        if args.adafactor:
            raise ValueError(
                "--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
                "Only one optimizer can be configured."
            )
    else:
        if hf_deepspeed_config.is_offload():
            logger.info(
                "Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the custom optimizer has both CPU and GPU implementation (except LAMB)"
            )

        # ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
        # But trainer uses AdamW by default.
        trainer.create_optimizer()
        optimizer = trainer.optimizer
        # To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
        config["zero_allow_untested_optimizer"] = True

    # DS schedulers (deepspeed/runtime/lr_schedules.py):
    #
    # DS name      | --lr_scheduler_type  | HF func                           | Notes
    # -------------| ---------------------|-----------------------------------|--------------------
    # LRRangeTest  | na                   | na                                | LRRT
    # OneCycle     | na                   | na                                | 1CLR
    # WarmupLR     | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0
    # WarmupDecayLR| linear               | get_linear_schedule_with_warmup   |
    lr_scheduler = None
    if "scheduler" not in config:
        if "optimizer" in config:
            # to make this option work, we need to init DS optimizer first, then init HS scheduler,
            # then pass the HS scheduler to DS init, which is not possible at the moment
            raise ValueError("At the moment HF scheduler + DeepSpeed optimizer combination is not possible")
        else:
            trainer.create_scheduler(num_training_steps=num_training_steps)
            lr_scheduler = trainer.lr_scheduler

    # keep for quick debug:
    # from pprint import pprint; pprint(config)

    # set the Deepspeed log level consistent with the trainer
    ds_logger.setLevel(args.get_process_log_level())

    model_parameters = filter(lambda p: p.requires_grad, model.parameters())

    model, optimizer, _, lr_scheduler = deepspeed.initialize(
        model=model,
        model_parameters=model_parameters,
        config_params=config,
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
    )

    if resume_from_checkpoint is not None:

        # it's possible that the user is trying to resume from model_path, which doesn't necessarily
        # contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
        # a resume from a checkpoint and not just a local pretrained weight. So we check here if the
        # path contains what looks like a deepspeed checkpoint
        import glob

        deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*"))

        if len(deepspeed_checkpoint_dirs) > 0:
            logger.info(f"Attempting to resume from {resume_from_checkpoint}")
            # this magically updates self.optimizer and self.lr_scheduler
            load_path, _ = model.load_checkpoint(
                resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True
            )
            if load_path is None:
                raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}")
        else:
            logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing")

    return model, optimizer, lr_scheduler