Spaces:
Sleeping
Sleeping
File size: 17,436 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed
"""
import importlib.util
import io
import json
import weakref
from copy import deepcopy
from functools import partialmethod
# from .dependency_versions_check import dep_version_check
from .file_utils import is_torch_available
from .utils import logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def is_deepspeed_available():
return importlib.util.find_spec("deepspeed") is not None
class HfDeepSpeedConfig:
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``).
Therefore it's important that this object remains alive while the program is still running.
:class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to
sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder
values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("deepspeed")
if isinstance(config_file_or_dict, dict):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overriden
config = deepcopy(config_file_or_dict)
elif isinstance(config_file_or_dict, str):
with io.open(config_file_or_dict, "r", encoding="utf-8") as f:
config = json.load(f)
else:
raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict")
self.config = config
# zero stage - this is done as early as possible, before model is created, to allow
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
# during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc.
self._stage = self.get_value("zero_optimization.stage", -1)
# offload
self._offload = False
if self.is_zero2() or self.is_zero3():
offload_devices_valid = set(["cpu", "nvme"])
offload_devices = set(
[
self.get_value("zero_optimization.offload_optimizer.device"),
self.get_value("zero_optimization.offload_param.device"),
]
)
if len(offload_devices & offload_devices_valid) > 0:
self._offload = True
def find_config_node(self, ds_key_long):
config = self.config
# find the config node of interest if it exists
nodes = ds_key_long.split(".")
ds_key = nodes.pop()
for node in nodes:
config = config.get(node)
if config is None:
return None, ds_key
return config, ds_key
def get_value(self, ds_key_long, default=None):
"""
Returns the set value or ``default`` if no value is set
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return default
return config.get(ds_key, default)
def is_true(self, ds_key_long):
"""
Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to
ask the very specific question of whether the value is set to :obj:`True` (and it's not set to :obj:`False` or
isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else bool(value)
def is_false(self, ds_key_long):
"""
Returns :obj:`True`/:obj:`False` only if the value is set, always :obj:`False` otherwise. So use this method to
ask the very specific question of whether the value is set to :obj:`False` (and it's not set to :obj:`True` or
isn't set).
"""
value = self.get_value(ds_key_long)
return False if value is None else not bool(value)
def is_zero2(self):
return self._stage == 2
def is_zero3(self):
return self._stage == 3
def is_offload(self):
return self._offload
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has
the same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
self._dtype = torch.float16
self.mismatches = []
def dtype(self):
return self._dtype
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
"""
A utility method that massages the config file and can optionally verify that the values match.
1. Replace "auto" values with ``TrainingArguments`` value.
2. If it wasn't "auto" and ``must_match`` is true, then check that DS config matches Trainer
config values and if mismatched add the entry to ``self.mismatched`` - will assert during
``trainer_config_finalize`` for one or more mismatches.
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return
if config.get(ds_key) == "auto":
config[ds_key] = hf_val
return
if not must_match:
return
ds_val = config.get(ds_key)
if ds_val is not None and ds_val != hf_val:
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
fill_only = partialmethod(fill_match, must_match=False)
def trainer_config_process(self, args):
"""
Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object
creation.
"""
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
self.fill_match(
"train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size"
)
self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps")
self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)")
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2")
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
self.fill_match("fp16.enabled", fp16_backend == "amp", "fp16+fp16_backend(amp)")
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
# only if we have an explicit fp16.enabled = False then it's fp32, if it's True or this
# whole config section is missing then the fallback is fp16
if self.is_false("fp16.enabled"):
self._dtype = torch.float32
# later there will be other dtypes besides just fp16 and fp32
# also not quite sure what dtype should be under apex, defaulting to fp16 for now
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we we can complete the configuration process.
"""
# zero
if self.is_zero3():
# automatically assign the optimal config values based on model config
hidden_size = model.config.hidden_size
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)")
self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps")
if len(self.mismatches) > 0:
mismatches = "\n".join(self.mismatches)
raise ValueError(
f"Please correct the following DeepSpeed config values that mismatch TrainingArguments values:\n{mismatches}\n"
"The easiest method is to set these DeepSpeed config values to 'auto'."
)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
Returns: model, optimizer, lr_scheduler
"""
import deepspeed
from deepspeed.utils import logger as ds_logger
model = trainer.model
args = trainer.args
hf_deepspeed_config = args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
# resume config update - some bits like `model` and `num_training_steps` only become available during train
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: No
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Mostly*
# 3. DS scheduler + HF optimizer: Mostly*
# 4. HF scheduler + DS optimizer: No
#
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
optimizer = None
if "optimizer" in config:
if args.adafactor:
raise ValueError(
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
"Only one optimizer can be configured."
)
else:
if hf_deepspeed_config.is_offload():
logger.info(
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the custom optimizer has both CPU and GPU implementation (except LAMB)"
)
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
trainer.create_optimizer()
optimizer = trainer.optimizer
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
# DS schedulers (deepspeed/runtime/lr_schedules.py):
#
# DS name | --lr_scheduler_type | HF func | Notes
# -------------| ---------------------|-----------------------------------|--------------------
# LRRangeTest | na | na | LRRT
# OneCycle | na | na | 1CLR
# WarmupLR | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0
# WarmupDecayLR| linear | get_linear_schedule_with_warmup |
lr_scheduler = None
if "scheduler" not in config:
if "optimizer" in config:
# to make this option work, we need to init DS optimizer first, then init HS scheduler,
# then pass the HS scheduler to DS init, which is not possible at the moment
raise ValueError("At the moment HF scheduler + DeepSpeed optimizer combination is not possible")
else:
trainer.create_scheduler(num_training_steps=num_training_steps)
lr_scheduler = trainer.lr_scheduler
# keep for quick debug:
# from pprint import pprint; pprint(config)
# set the Deepspeed log level consistent with the trainer
ds_logger.setLevel(args.get_process_log_level())
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
model_parameters=model_parameters,
config_params=config,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if resume_from_checkpoint is not None:
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {resume_from_checkpoint}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = model.load_checkpoint(
resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}")
else:
logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing")
return model, optimizer, lr_scheduler
|