Spaces:
Runtime error
Runtime error
"""import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""" | |
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import json | |
# Retrieve the API token from the environment variable | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
# Initialize the Hugging Face Inference Client | |
client = InferenceClient( | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
token=API_TOKEN | |
) | |
# System prompt to define model behavior | |
system_prompt = "You are a helpful assistant that provides concise and accurate answers." | |
# Function to handle the chat completion | |
def hf_chat(user_input): | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_input} | |
] | |
response = "" | |
try: | |
# Stream the response | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=500, | |
stream=True, | |
): | |
try: | |
# Parse each part of the response carefully | |
content = message.choices[0].delta.content | |
response += content | |
except (KeyError, json.JSONDecodeError) as e: | |
# Print error details for debugging | |
print(f"Error while parsing response: {e}") | |
continue # Continue receiving the stream | |
except Exception as e: | |
# Catch and print any unexpected errors during the stream | |
return f"Error occurred: {str(e)}" | |
return response | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# mistral nemo prompt enhancer") | |
with gr.Row(): | |
with gr.Column(): | |
user_input = gr.Textbox( | |
label="Enter your message", | |
placeholder="Ask me anything..." | |
) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
output = gr.Textbox(label="Response") | |
submit_btn.click(fn=hf_chat, inputs=user_input, outputs=output) | |
# Launch Gradio app | |
if __name__ == "__main__": | |
demo.launch(show_api=True, share=False) |