"""import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() """ import os import gradio as gr from huggingface_hub import InferenceClient import json # Retrieve the API token from the environment variable API_TOKEN = os.getenv("HF_READ_TOKEN") # Initialize the Hugging Face Inference Client client = InferenceClient( "mistralai/Mistral-Nemo-Instruct-2407", token=API_TOKEN ) # System prompt to define model behavior system_prompt = "You are a helpful assistant that provides concise and accurate answers." # Function to handle the chat completion def hf_chat(user_input): messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_input} ] response = "" try: # Stream the response for message in client.chat_completion( messages=messages, max_tokens=500, stream=True, ): try: # Parse each part of the response carefully content = message.choices[0].delta.content response += content except (KeyError, json.JSONDecodeError) as e: # Print error details for debugging print(f"Error while parsing response: {e}") continue # Continue receiving the stream except Exception as e: # Catch and print any unexpected errors during the stream return f"Error occurred: {str(e)}" return response # Gradio interface with gr.Blocks() as demo: gr.Markdown("# mistral nemo prompt enhancer") with gr.Row(): with gr.Column(): user_input = gr.Textbox( label="Enter your message", placeholder="Ask me anything..." ) submit_btn = gr.Button("Submit") with gr.Column(): output = gr.Textbox(label="Response") submit_btn.click(fn=hf_chat, inputs=user_input, outputs=output) # Launch Gradio app if __name__ == "__main__": demo.launch(show_api=True, share=False)