Update app.py
Browse files
app.py
CHANGED
|
@@ -66,20 +66,38 @@ async def generate_image(
|
|
| 66 |
|
| 67 |
return image, seed
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
async def upscale_image(image, upscale_factor):
|
| 70 |
try:
|
| 71 |
-
result =
|
| 72 |
prompt="",
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
guidance_scale=3.5,
|
| 76 |
-
num_inference_steps=18,
|
| 77 |
-
model="finegrain/finegrain-image-enhancer"
|
| 78 |
)
|
| 79 |
except Exception as e:
|
| 80 |
raise gr.Error(f"Error in {e}")
|
| 81 |
|
| 82 |
-
return result
|
| 83 |
|
| 84 |
async def gen(
|
| 85 |
prompt:str,
|
|
|
|
| 66 |
|
| 67 |
return image, seed
|
| 68 |
|
| 69 |
+
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 70 |
+
client = Client("finegrain/finegrain-image-enhancer")
|
| 71 |
+
result = client.predict(
|
| 72 |
+
input_image=handle_file(img_path),
|
| 73 |
+
prompt=prompt,
|
| 74 |
+
negative_prompt="",
|
| 75 |
+
seed=42,
|
| 76 |
+
upscale_factor=upscale_factor,
|
| 77 |
+
controlnet_scale=0.6,
|
| 78 |
+
controlnet_decay=1,
|
| 79 |
+
condition_scale=6,
|
| 80 |
+
tile_width=112,
|
| 81 |
+
tile_height=144,
|
| 82 |
+
denoise_strength=0.35,
|
| 83 |
+
num_inference_steps=18,
|
| 84 |
+
solver="DDIM",
|
| 85 |
+
api_name="/process"
|
| 86 |
+
)
|
| 87 |
+
print(result)
|
| 88 |
+
return result[1]
|
| 89 |
+
|
| 90 |
async def upscale_image(image, upscale_factor):
|
| 91 |
try:
|
| 92 |
+
result = get_upscale_finegrain(
|
| 93 |
prompt="",
|
| 94 |
+
img_path=image,
|
| 95 |
+
upscale_factor=upscale_factor
|
|
|
|
|
|
|
|
|
|
| 96 |
)
|
| 97 |
except Exception as e:
|
| 98 |
raise gr.Error(f"Error in {e}")
|
| 99 |
|
| 100 |
+
return result
|
| 101 |
|
| 102 |
async def gen(
|
| 103 |
prompt:str,
|