Update app.py
Browse files
app.py
CHANGED
|
@@ -33,6 +33,8 @@ def enable_lora(lora_add):
|
|
| 33 |
else:
|
| 34 |
return lora_add
|
| 35 |
|
|
|
|
|
|
|
| 36 |
async def generate_image(
|
| 37 |
prompt:str,
|
| 38 |
model:str,
|
|
@@ -50,7 +52,6 @@ async def generate_image(
|
|
| 50 |
|
| 51 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 52 |
|
| 53 |
-
client = AsyncInferenceClient()
|
| 54 |
try:
|
| 55 |
image = await client.text_to_image(
|
| 56 |
prompt=text,
|
|
@@ -66,23 +67,13 @@ async def generate_image(
|
|
| 66 |
return image, seed
|
| 67 |
|
| 68 |
async def upscale_image(image, upscale_factor):
|
| 69 |
-
client = AsyncInferenceClient()
|
| 70 |
try:
|
| 71 |
-
result = await client.
|
| 72 |
-
input_image=image,
|
| 73 |
prompt="",
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
controlnet_scale=0.6,
|
| 78 |
-
controlnet_decay=1,
|
| 79 |
-
condition_scale=6,
|
| 80 |
-
tile_width=112,
|
| 81 |
-
tile_height=144,
|
| 82 |
-
denoise_strength=0.35,
|
| 83 |
num_inference_steps=18,
|
| 84 |
-
solver="DDIM",
|
| 85 |
-
api_name="/process",
|
| 86 |
model="finegrain/finegrain-image-enhancer"
|
| 87 |
)
|
| 88 |
except Exception as e:
|
|
@@ -99,15 +90,12 @@ async def gen(
|
|
| 99 |
scales:float=3.5,
|
| 100 |
steps:int=24,
|
| 101 |
seed:int=-1,
|
| 102 |
-
upscale_factor:int=2
|
| 103 |
-
progress=gr.Progress(track_tqdm=True)
|
| 104 |
):
|
| 105 |
model = enable_lora(lora_add)
|
| 106 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
| 107 |
-
image_path = "image.png"
|
| 108 |
-
image.save(image_path)
|
| 109 |
|
| 110 |
-
upscaled_image = await upscale_image(
|
| 111 |
return upscaled_image, seed
|
| 112 |
|
| 113 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
|
| 33 |
else:
|
| 34 |
return lora_add
|
| 35 |
|
| 36 |
+
client = AsyncInferenceClient()
|
| 37 |
+
|
| 38 |
async def generate_image(
|
| 39 |
prompt:str,
|
| 40 |
model:str,
|
|
|
|
| 52 |
|
| 53 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 54 |
|
|
|
|
| 55 |
try:
|
| 56 |
image = await client.text_to_image(
|
| 57 |
prompt=text,
|
|
|
|
| 67 |
return image, seed
|
| 68 |
|
| 69 |
async def upscale_image(image, upscale_factor):
|
|
|
|
| 70 |
try:
|
| 71 |
+
result = await client.text_to_image(
|
|
|
|
| 72 |
prompt="",
|
| 73 |
+
height=image.height * upscale_factor,
|
| 74 |
+
width=image.width * upscale_factor,
|
| 75 |
+
guidance_scale=3.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
num_inference_steps=18,
|
|
|
|
|
|
|
| 77 |
model="finegrain/finegrain-image-enhancer"
|
| 78 |
)
|
| 79 |
except Exception as e:
|
|
|
|
| 90 |
scales:float=3.5,
|
| 91 |
steps:int=24,
|
| 92 |
seed:int=-1,
|
| 93 |
+
upscale_factor:int=2
|
|
|
|
| 94 |
):
|
| 95 |
model = enable_lora(lora_add)
|
| 96 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
upscaled_image = await upscale_image(image, upscale_factor)
|
| 99 |
return upscaled_image, seed
|
| 100 |
|
| 101 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|