Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import clipGPT
|
@@ -10,12 +8,7 @@ import difflib
|
|
10 |
import ViTCoAtt
|
11 |
from build_vocab import Vocabulary
|
12 |
|
13 |
-
|
14 |
-
img = Image.open(io.imread(image_path_or_url))
|
15 |
-
img = img.resize((80, 80)) # Adjust size as needed
|
16 |
-
buf = io.BytesIO()
|
17 |
-
img.save(buf, format='JPEG')
|
18 |
-
return buf.getvalue()
|
19 |
|
20 |
# Caption generation functions
|
21 |
def generate_caption_clipgpt(image):
|
@@ -37,14 +30,29 @@ with gr.Blocks() as demo:
|
|
37 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
38 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with gr.Row():
|
42 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
43 |
|
44 |
generate_button = gr.Button("Generate Caption")
|
45 |
|
46 |
-
|
47 |
|
|
|
48 |
|
49 |
def predict(img, model_name):
|
50 |
if model_name == "CLIP-GPT2":
|
@@ -59,6 +67,7 @@ with gr.Blocks() as demo:
|
|
59 |
|
60 |
# Event handlers
|
61 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
|
|
62 |
|
63 |
|
64 |
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import clipGPT
|
|
|
8 |
import ViTCoAtt
|
9 |
from build_vocab import Vocabulary
|
10 |
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Caption generation functions
|
14 |
def generate_caption_clipgpt(image):
|
|
|
30 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
31 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
32 |
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
sample_images = [
|
36 |
+
'https://imgur.com/W1pIr9b',
|
37 |
+
'https://imgur.com/MLJaWnf',
|
38 |
+
'https://imgur.com/6XymFW1',
|
39 |
+
'https://imgur.com/zdPjZZ1',
|
40 |
+
'https://imgur.com/DKUlZbF'
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
image = gr.Image(label="Upload Chest X-ray", type="pil")
|
45 |
+
|
46 |
+
sample_images_gallery = gr.Gallery(value = sample_images,label="Sample Images")
|
47 |
|
48 |
with gr.Row():
|
49 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
50 |
|
51 |
generate_button = gr.Button("Generate Caption")
|
52 |
|
53 |
+
|
54 |
|
55 |
+
caption = gr.Textbox(label="Generated Caption")
|
56 |
|
57 |
def predict(img, model_name):
|
58 |
if model_name == "CLIP-GPT2":
|
|
|
67 |
|
68 |
# Event handlers
|
69 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
70 |
+
sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images
|
71 |
|
72 |
|
73 |
demo.launch()
|