Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,20 +37,6 @@ with gr.Blocks() as demo:
|
|
| 37 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
| 38 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
examples_list = [
|
| 42 |
-
['https://imgur.com/W1pIr9b', 'Caption for image 1'],
|
| 43 |
-
['https://imgur.com/MLJaWnf', 'Caption for image 2']
|
| 44 |
-
]
|
| 45 |
-
examples = gr.Examples(examples_list,
|
| 46 |
-
inputs="image",
|
| 47 |
-
outputs=["image", "text"],
|
| 48 |
-
label="Example Images",
|
| 49 |
-
fn=render_image
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
image_table = gr.Dataframe(headers=['image', 'caption'], datatype=['html', 'str'])
|
| 53 |
-
|
| 54 |
|
| 55 |
with gr.Row():
|
| 56 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
|
@@ -59,14 +45,6 @@ with gr.Blocks() as demo:
|
|
| 59 |
|
| 60 |
caption = gr.Textbox(label="Generated Caption")
|
| 61 |
|
| 62 |
-
|
| 63 |
-
# Function to populate table rows when an example image is clicked
|
| 64 |
-
def populate_table_from_example(image_path, caption):
|
| 65 |
-
new_row = [[render_image(image_path)], [caption]]
|
| 66 |
-
image_table.append(new_row)
|
| 67 |
-
|
| 68 |
-
examples.click(populate_table_from_example, inputs=examples, outputs=image_table)
|
| 69 |
-
|
| 70 |
|
| 71 |
def predict(img, model_name):
|
| 72 |
if model_name == "CLIP-GPT2":
|
|
@@ -81,7 +59,6 @@ with gr.Blocks() as demo:
|
|
| 81 |
|
| 82 |
# Event handlers
|
| 83 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
| 84 |
-
sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images
|
| 85 |
|
| 86 |
|
| 87 |
demo.launch()
|
|
|
|
| 37 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
| 38 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
with gr.Row():
|
| 42 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
|
|
|
| 45 |
|
| 46 |
caption = gr.Textbox(label="Generated Caption")
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def predict(img, model_name):
|
| 50 |
if model_name == "CLIP-GPT2":
|
|
|
|
| 59 |
|
| 60 |
# Event handlers
|
| 61 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
demo.launch()
|