File size: 2,736 Bytes
7ebfeb9
afda258
 
cf05f8b
22ed06b
 
623b4fb
931c795
7fcb6d2
623b4fb
 
7ebfeb9
afda258
aafac25
5ce0179
7ebfeb9
 
aafac25
cf05f8b
 
afda258
dee2758
6ae0110
dee2758
fc6f52f
7ebfeb9
623b4fb
22ed06b
 
 
 
aafac25
22ed06b
 
0e534f1
1618050
 
 
 
dee2758
cb2be18
 
281dd11
b1241b7
dee2758
f63a88c
e6a32cf
9afb73f
 
e6a32cf
9afb73f
e6a32cf
 
 
 
4c10f74
 
22ed06b
b1241b7
f63a88c
 
22ed06b
 
a4fcc26
afda258
aafac25
b51c75c
aafac25
dee2758
 
afda258
623b4fb
 
afda258
aafac25
 
 
623b4fb
 
22ed06b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
from PIL import Image
import clipGPT
import vitGPT
import skimage.io as io
import PIL.Image
import difflib
import ViTCoAtt
from build_vocab import Vocabulary



# Caption generation functions
def generate_caption_clipgpt(image, max_tokens, temperature):
    caption = clipGPT.generate_caption_clipgpt(image)
    return caption

def generate_caption_vitgpt(image, max_tokens, temperature):
    caption = vitGPT.generate_caption(image)
    return caption

def generate_caption_vitCoAtt(image):
    caption = ViTCoAtt.CaptionSampler.main(image)
    return caption


with gr.Blocks() as demo:
    
    gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports πŸ₯πŸ€–</h1>")
    gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")


    with gr.Row():
        sample_images = [
        'https://imgur.com/W1pIr9b',
        'https://imgur.com/MLJaWnf',
        'https://imgur.com/6XymFW1',
        'https://imgur.com/zdPjZZ1',
        'https://imgur.com/DKUlZbF'
            ]

        
        image = gr.Image(label="Upload Chest X-ray", type="pil")    
        
        sample_images_gallery = gr.Gallery(value = sample_images,label="Sample Images")

    gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>")
        
            
    with gr.Row():
        
        with gr.Column():  # Column for dropdowns and model choice
            max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
            temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7) 
            
        model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")

        generate_button = gr.Button("Generate Caption") 
    
    

    caption = gr.Textbox(label="Generated Caption") 

    def predict(img,  model_name, max_tokens, temperature):
        if model_name == "CLIP-GPT2":
            return generate_caption_clipgpt(img, max_tokens, temperature)
        elif model_name == "ViT-GPT2":
            return generate_caption_vitgpt(img, max_tokens, temperature)
        elif model_name == "ViT-CoAttention":
            return generate_caption_vitCoAtt(img)
        else:
            return "Caption generation for this model is not yet implemented."     


    # Event handlers 
    generate_button.click(predict, [image, model_choice, max_tokens, temperature], caption) 
    sample_images_gallery.change(predict, [sample_images_gallery, model_choice, max_tokens, temperature], caption)  


demo.launch()