Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import clipGPT
|
@@ -38,10 +36,6 @@ def generate_caption_vitgpt(image):
|
|
38 |
|
39 |
with gr.Blocks() as demo:
|
40 |
|
41 |
-
generated_captions = {
|
42 |
-
"CLIP-GPT2": "",
|
43 |
-
"ViT-GPT2": "",
|
44 |
-
}
|
45 |
|
46 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
47 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
@@ -54,18 +48,23 @@ with gr.Blocks() as demo:
|
|
54 |
"CXR194_IM-0609-1001.png",
|
55 |
"CXR195_IM-0618-1001.png"
|
56 |
]
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
with gr.Row():
|
67 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
68 |
generate_button = gr.Button("Generate Caption")
|
|
|
69 |
caption = gr.Textbox(label="Generated Caption")
|
70 |
|
71 |
def predict(img, model_name):
|
@@ -75,19 +74,17 @@ with gr.Blocks() as demo:
|
|
75 |
return generate_caption_vitgpt(img)
|
76 |
else:
|
77 |
return "Caption generation for this model is not yet implemented."
|
78 |
-
generated_captions[model_name] = caption
|
79 |
|
80 |
with gr.Row():
|
81 |
-
|
82 |
-
|
83 |
-
compare_button = gr.Button("Compare
|
84 |
with gr.Row():
|
85 |
comparison_result = gr.Textbox(label="Comparison Result")
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
), [], comparison_result)
|
91 |
|
92 |
|
93 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import clipGPT
|
|
|
36 |
|
37 |
with gr.Blocks() as demo:
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
40 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
41 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
|
|
48 |
"CXR194_IM-0609-1001.png",
|
49 |
"CXR195_IM-0618-1001.png"
|
50 |
]
|
51 |
+
|
52 |
+
image = gr.Image(label="Upload Chest X-ray")
|
53 |
+
|
54 |
+
gr.Gallery(
|
55 |
+
value = sample_images,
|
56 |
+
label="Sample Images",
|
57 |
+
)
|
58 |
+
|
59 |
+
# sample_images_gallery = gr.Gallery(
|
60 |
+
# value = sample_images,
|
61 |
+
# label="Sample Images",
|
62 |
+
# )
|
63 |
+
|
64 |
with gr.Row():
|
65 |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
66 |
generate_button = gr.Button("Generate Caption")
|
67 |
+
|
68 |
caption = gr.Textbox(label="Generated Caption")
|
69 |
|
70 |
def predict(img, model_name):
|
|
|
74 |
return generate_caption_vitgpt(img)
|
75 |
else:
|
76 |
return "Caption generation for this model is not yet implemented."
|
|
|
77 |
|
78 |
with gr.Row():
|
79 |
+
text1 = gr.Textbox(label="Text 1")
|
80 |
+
text2 = gr.Textbox(label="Text 2")
|
81 |
+
compare_button = gr.Button("Compare Texts")
|
82 |
with gr.Row():
|
83 |
comparison_result = gr.Textbox(label="Comparison Result")
|
84 |
|
85 |
+
# Event handlers
|
86 |
+
generate_button.click(predict, [image, model_choice], caption)
|
87 |
+
compare_button.click(lambda: compare_and_highlight(text1.value, text2.value), [], comparison_result)
|
|
|
88 |
|
89 |
|
90 |
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|