File size: 2,404 Bytes
7ebfeb9 afda258 cf05f8b 22ed06b 623b4fb 931c795 7fcb6d2 623b4fb eba7622 7ebfeb9 afda258 8875dbc 7ebfeb9 8875dbc afda258 dee2758 8875dbc fc6f52f 7ebfeb9 97fceae 9511ac2 97fceae 9511ac2 97fceae 8875dbc 97fceae eba7622 8875dbc 97fceae 8875dbc 97fceae 4efeadd 58ff2f9 97fceae 0557993 97fceae c2d4124 97fceae 8875dbc 623b4fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
from PIL import Image
import clipGPT
import vitGPT
import skimage.io as io
import PIL.Image
import difflib
import ViTCoAtt
from build_vocab import Vocabulary
# Caption generation functions
def generate_caption_clipgpt(image, max_tokens, temperature):
caption = clipGPT.generate_caption_clipgpt(image, max_tokens, temperature)
return caption
def generate_caption_vitgpt(image, max_tokens, temperature):
caption = vitGPT.generate_caption(image, max_tokens, temperature)
return caption
def generate_caption_vitCoAtt(image):
caption = ViTCoAtt.CaptionSampler.main(image)
return caption
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
with gr.Row():
image = gr.Image(label="Upload Chest X-ray", type="pil")
gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>")
with gr.Row():
with gr.Column(): # Column for dropdowns and model choice
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7)
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
generate_button = gr.Button("Generate Caption")
caption = gr.Textbox(label="Generated Caption")
def predict(img, model_name, max_tokens, temperature):
if model_name == "CLIP-GPT2":
return generate_caption_clipgpt(img, max_tokens, temperature)
elif model_name == "ViT-GPT2":
return generate_caption_vitgpt(img, max_tokens, temperature)
elif model_name == "ViT-CoAttention":
return generate_caption_vitCoAtt(img)
else:
return "Caption generation for this model is not yet implemented."
examples = [f"example{i}.jpg" for i in range(1,3)]
print(examples, type(examples))
interface = gr.Interface(
fn=predict,
inputs = [image, model_choice, max_tokens, temperature],
theme="gradio/monochrome",
outputs=caption,
examples = examples
)
interface.launch(debug=True)
|