Spaces:
Sleeping
Sleeping
# Smart Customer Support Assistant (Enhanced UI Version) | |
# Note: Core analysis logic remains unchanged, now with text generation and customer selection | |
import streamlit as st | |
from transformers import pipeline | |
import re | |
# ------------------------------ | |
# Load models (now includes 3rd: text generation) | |
# ------------------------------ | |
emotion_classifier = pipeline( | |
"text-classification", | |
model="j-hartmann/emotion-english-distilroberta-base", | |
return_all_scores=True | |
) | |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base") | |
# ------------------------------ | |
# Candidate tasks / prompts | |
# ------------------------------ | |
candidate_tasks = [ | |
"change mobile plan", | |
"top up balance", | |
"report service outage", | |
"ask for billing support", | |
"reactivate service", | |
"cancel subscription", | |
"check account status", | |
"upgrade device" | |
] | |
def generate_response(intent): | |
prompt = f"Generate a polite and helpful customer service response for the request '{intent}'. Include a greeting, summary of current status like plan or balance using anonymized placeholders (e.g. Plan X, Β₯X), a suitable recommendation, and end with a question offering assistance." | |
output = text_generator(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'] | |
return output | |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"} | |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"} | |
# ------------------------------ | |
# Emotion processing | |
# ------------------------------ | |
def refine_emotion_label(text, model_emotion): | |
text_lower = text.lower() | |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"] | |
exclamations = text.count("!") | |
upper_words = sum(1 for word in text.split() if word.isupper()) | |
signal_score = sum([ | |
any(word in text_lower for word in urgent_keywords), | |
exclamations >= 2, | |
upper_words >= 1 | |
]) | |
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2: | |
return "urgency" | |
return model_emotion | |
def get_emotion_label(emotion_result, text): | |
sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True) | |
return refine_emotion_label(text, sorted_emotions[0]['label']) | |
def get_emotion_score(emotion): | |
if emotion.lower() in urgent_emotions: | |
return 1.0 | |
elif emotion.lower() in moderate_emotions: | |
return 0.6 | |
else: | |
return 0.2 | |
# ------------------------------ | |
# UI: Sidebar for customer selection | |
# ------------------------------ | |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide") | |
st.sidebar.title("π Customer Selector") | |
if "customers" not in st.session_state: | |
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []} | |
customer_names = list(st.session_state.customers.keys()) | |
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names) | |
# Load or init selected customer's session | |
if "chat_sessions" not in st.session_state: | |
st.session_state.chat_sessions = {} | |
if selected_customer not in st.session_state.chat_sessions: | |
st.session_state.chat_sessions[selected_customer] = { | |
"chat": [], | |
"system_result": None, | |
"agent_reply": "", | |
"support_required": "" | |
} | |
session = st.session_state.chat_sessions[selected_customer] | |
# ------------------------------ | |
# Main Interface | |
# ------------------------------ | |
st.title("Smart Customer Support Assistant (for Agents Only)") | |
st.markdown("### Conversation") | |
for msg in session["chat"]: | |
with st.chat_message(msg['role']): | |
st.markdown(msg['content']) | |
col1, col2 = st.columns([6,1]) | |
with col1: | |
user_input = st.text_input("Enter customer message:", key="user_input") | |
with col2: | |
analyze_clicked = st.button("Analyze", use_container_width=True) | |
if analyze_clicked and user_input.strip(): | |
emotion_result = emotion_classifier(user_input) | |
emotion_label = get_emotion_label(emotion_result, user_input) | |
emotion_score = get_emotion_score(emotion_label) | |
intent_result = intent_classifier(user_input, candidate_tasks) | |
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3] | |
content_score = 0.0 | |
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]): | |
content_score += 0.4 | |
if any(label in ["top up balance", "reactivate service"] for label in top_intents): | |
content_score += 0.4 | |
final_score = 0.5 * emotion_score + 0.5 * content_score | |
session["chat"].append({"role": "user", "content": user_input}) | |
if final_score < 0.5 and top_intents: | |
intent = top_intents[0] | |
response = generate_response(intent) | |
session["chat"].append({"role": "assistant", "content": response}) | |
session["system_result"] = None | |
session["support_required"] = "π’ Automated response handled this request." | |
else: | |
session["system_result"] = { | |
"emotion": emotion_label, | |
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm", | |
"intents": top_intents | |
} | |
session["support_required"] = "π΄ Human support required." | |
if session["support_required"]: | |
st.markdown(f"### {session['support_required']}") | |
st.subheader("Agent Response Console") | |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"]) | |
if st.button("Send Reply"): | |
if session["agent_reply"].strip(): | |
session["chat"].append({"role": "assistant", "content": session["agent_reply"]}) | |
session["agent_reply"] = "" | |
session["system_result"] = None | |
session["support_required"] = "" | |
if session["system_result"] is not None: | |
st.markdown("#### Customer Status") | |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}") | |
st.markdown(f"- **Tone:** {session['system_result']['tone']}") | |
st.markdown("#### Detected Customer Needs") | |
for intent in session['system_result']['intents']: | |
suggestion = generate_response(intent) | |
st.markdown(f"**β’ {intent.capitalize()}**") | |
st.code(suggestion) | |
if st.button("Copy to agent reply box", key=f"btn_{selected_customer}_{intent}"): | |
session["agent_reply"] = suggestion | |