JoshuaZywoo's picture
Update app.py
49f0804 verified
raw
history blame
6.03 kB
import streamlit as st
from transformers import pipeline
import re
# Load upgraded models
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Candidate intents
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
# Emotion categories (updated)
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned"}
def get_emotion_label(emotion_result):
sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True)
return sorted_emotions[0]['label']
def get_emotion_score(emotion):
if emotion.lower() in urgent_emotions:
return 1.0
elif emotion.lower() in moderate_emotions:
return 0.6
else:
return 0.2
def get_content_score(text, top_intents):
score = 0.0
trigger_words = ["out of service", "urgent", "not working", "stopped", "can't", "immediately"]
if any(kw in text.lower() for kw in trigger_words):
score += 0.3
if any(label in ["top up balance", "reactivate service", "report service outage"] for label in top_intents):
score += 0.4
if any(label in ["change mobile plan", "ask for billing support"] for label in top_intents):
score += 0.2
return min(score + 0.1, 1.0)
def generate_reply(input_text, intent):
# Intent-specific suggestion sentences
intent_solutions = {
"top up balance": "Your balance is ¥12. Current promo: recharge ¥100 get ¥5 bonus.",
"reactivate service": "Your service is suspended due to unpaid ¥38. Recharge to restore within 30 mins.",
"change mobile plan": "You're on Plan Basic (¥68/5GB). Suggest Plan Plus (¥98/20GB).",
"check account status": "Your data usage is 3.2GB/5GB. Balance: ¥12. Calls left: 22 mins.",
"ask for billing support": "Last bill was ¥96 for March. Includes data overage ¥16.",
"cancel subscription": "Your contract ends on 2025-06-30. No penalty after this date.",
"upgrade device": "You're eligible for upgrade. New iPhone plan starts at ¥399/month.",
"report service outage": "We're detecting signal issues in your area (ZIP: XXX). Engineers notified."
}
# Intent-specific closing question
intent_closings = {
"top up balance": "Would you like to proceed with a recharge now?",
"reactivate service": "Shall I help you restart your service now?",
"report service outage": "Would you like me to file a service report for you?",
"change mobile plan": "Would you like to switch to a better plan?",
"ask for billing support": "Shall I show your last 3 billing records?",
"cancel subscription": "Shall I guide you through cancellation?",
"check account status": "Want a summary of your usage and balance?",
"upgrade device": "Would you like me to show available upgrade options?"
}
solution = intent_solutions.get(intent.lower(), "Here's how we can assist you with this issue.")
closing = intent_closings.get(intent.lower(), "Is there anything else I can help with?")
opening = "Thank you for contacting us. I understand your concern."
return f"{opening} {solution} {closing}"
# Streamlit UI
st.set_page_config(page_title="Customer Support Assistant", layout="centered")
st.title("📞 Smart Customer Support Assistant (for Agents Only)")
user_input = st.text_area("Enter customer's message or complaint:", height=150)
if st.button("Analyze Message"):
if user_input.strip() == "":
st.warning("Please enter a customer message.")
else:
with st.spinner("Processing..."):
# Emotion detection (updated)
emotion_result = emotion_classifier(user_input)
emotion_label = get_emotion_label(emotion_result)
emotion_score = get_emotion_score(emotion_label)
# Intent detection
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
# Content score
content_score = get_content_score(user_input, top_intents)
# Final decision score
final_score = (0.5 * emotion_score) + (0.5 * content_score)
st.subheader("🧾 System Summary")
if final_score < 0.5:
st.markdown("### 🟢 This message was handled automatically.")
if top_intents:
auto_intent = top_intents[0]
auto_reply = generate_reply(user_input, auto_intent)
st.markdown("#### 🤖 Auto-Response Sent to User:")
st.success(auto_reply)
else:
st.info("No clear intent detected. A general auto-reply was used.")
else:
st.markdown("### 🔴 Human Support Required")
# Customer Profile Summary
st.markdown("#### 👤 Customer Status:")
st.write(f"- **Emotion detected**: {emotion_label.capitalize()}")
st.write(f"- **Tone**: {'Urgent' if emotion_score > 0.8 else 'Concerned' if emotion_score > 0.5 else 'Calm'}")
if top_intents:
st.markdown("#### 🧩 Detected Customer Needs:")
for intent in top_intents:
reply = generate_reply(user_input, intent)
st.markdown(f"**• {intent.capitalize()}**")
st.write(reply)
else:
st.warning("No clear intent detected. Manual review recommended.")